Skip to main content
Log in

Exciton resonance energy transfer: Effects of geometry and transition moment orientation in model photosystems

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

When a photon is absorbed by a group of identical chromophores the excited state may be described as an exciton. Such excitons play a significant role in the energetics of many photoactive systems, and in particular the photosynthetic unit. This work concerns the transfer of excitonic energy to a donor, focussing on the effects of geometry. To facilitate the analysis, calculated quantum amplitudes are expressed in terms of orientation factors with clear physical significance. In detailed calculations on an idealised, three-fold symmetric photosystem it is shown that intermolecular vectors and relative transition dipole moment orientations directly affect transfer rates, and the detailed form of that dependence is determined. Differences in the linear combinations which form the excitonic states are fully investigated and various configurations exclusively exhibiting excitonic behaviour are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. van Amerongen and L. Valkunas and R. van Grondelle, Photosynthetic Excitons, World Scientific, Singapore, 2000.

    Book  Google Scholar 

  2. H. Sumi, Structural strategies in the antenna system of photosynthesis on the basis of quantum-mechanical coherence among pigments, J. Lumin., 2000, 87-89, 71.

    Article  CAS  Google Scholar 

  3. J. Deisenhofer and O. Epp and K. Miki and R. Huber and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 À resolution, Nature, 2000, 318, 618.

    Article  Google Scholar 

  4. R. E. Fenna and B. W. Matthews and J. M. Olson and E. K. Shaw, Structure of a bacteriochlorophyll protein from the green photosynthetic bacterium Chlorobium limicola: Crystallographic evidence for a trimer, J. Mol Biol., 1974, 84, 231.

    Article  CAS  Google Scholar 

  5. W. Kühlbrandt and D. N. Wang and Y. Fujiyoshi, Atomic model of plant light-harvesting complex by electron crystallography, Nature, 1994, 367, 614.

    Article  Google Scholar 

  6. N. Krauss, W.-D. Schubert and O. Klukas and P. Fromme and H. T. Witt and W. Saenger, Photosystem I at 4 À resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system, Nature Struct. Biol., 1996, 3, 965.

    Article  CAS  Google Scholar 

  7. G. McDermott and S. M. Prince and A. A. Freer and A. M. Hawthornthwaite-Lawless and M. Z. Papiz and R. J. Cogdell and N. W. Isaacs, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature, 1995, 374, 517.

    Article  CAS  Google Scholar 

  8. V. Sündström and T. Pullerits and R. van Grondelle, Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit, J. Phys Chem. B, 1999, 103, 2327.

    Article  Google Scholar 

  9. S. F. Swallen, Z.-Y. Shi, W. Tan and Z. Xu and J. S. Moore and R. Kopelman, Exciton localisation hierarchy and directed energy transfer in conjugated linear aromatic chains and dendrimeric supermolecules, J. Lumin., 1998, 76&77, 193.

    Article  CAS  Google Scholar 

  10. P. Reineker and A. Engelmann and V. I. Yudson, Excitons in dendrimers: optical absorption and energy transport, J. Lumin, 2001, 94-95, 203.

    Article  Google Scholar 

  11. C. Devadoss and P. Bharathi and J. S. Moore, Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient, J. Am. Chem. Soc., 1996, 118, 9635.

    Article  CAS  Google Scholar 

  12. A. Archut and F. Vögtle, Functional cascade molecules, Chem. Soc. Rev., 1998, 27, 233.

    Article  CAS  Google Scholar 

  13. M. Maus and R. De and M. Lor and T. Weil and S. Mitra, U.-M. Wiesler and A. Herrmann and J. Vosch and K. Müllen and F. C. De Scryver, Intra-molecular energy hopping and energy trapping in polyphenylene dendrimers with multiple peryleneimide donor chromophores and a terryleneimide acceptor trap chromophore, J. Am. Chem. Soc., 2001, 123, 7668.

    Article  CAS  Google Scholar 

  14. A. Bar-Haim and J. Klafter and R. Kopelmann, Dendrimers as controlled artificial energy antennae, J. Am. Chem. Soc., 1997, 119, 6197.

    Article  CAS  Google Scholar 

  15. A. Adronov and J. M. J. Fréchet, Light-harvesting dendrimers, Chem. Commun., 2000, 1701.

    Google Scholar 

  16. Th. Förster, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys., 1948, 6, 55

    Article  Google Scholar 

  17. English translationin Biological Physics, ed. E. V. Mielczarek and E. Greenbaum and R. S. Knox, American Institute of Physics, New York, 1993.

    Google Scholar 

  18. L. M. N. Duysens, Photosynthesis, Prog. Biophys, 1964, 14, 1.

    Article  Google Scholar 

  19. D. L. Dexter, A theory of sensitised luminescence in solids, J. Chem. Phys, 1953, 21, 836.

    Article  CAS  Google Scholar 

  20. D. L. Andrews, A unified theory of radiative and radiationless molecular energy transfer, Chem. Phys, 1989, 135, 195.

    Article  CAS  Google Scholar 

  21. D. L. Andrews and B. S. Sherborne, Resonance energy transfer: A quantum electrodynamical study, J. Chem. Phys, 1987, 86, 4011.

    Article  CAS  Google Scholar 

  22. D. L. Andrews and G. Juzeliunas, The range dependence of fluorescence anisotropy in molecular energy transfer, J. Chem. Phys., 1991, 95, 5513.

    Article  CAS  Google Scholar 

  23. D. L. Andrews and G. Juzeliunas, Intermolecular energy transfer: Retardation effects, J. Chem. Phys, 1992, 96, 6606.

    Article  CAS  Google Scholar 

  24. G. D. Scholes and G. R. Fleming, On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to 850 energy transfer, J. Phys. Chem. B, 2000, 104, 1854.

    Article  CAS  Google Scholar 

  25. G D. Scholes and X. J. Jordanides and G. R. Fleming, Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies, J. Phys. Chem. B, 2001, 105, 1640.

    Article  CAS  Google Scholar 

  26. X. J. Jordanides, G. D. Scholes and G. R. Fleming, The mechanism of energy transfer in the bacterial photosynthetic reaction center, J. Phys. Chem. B, 2001, 105, 1652.

    Article  CAS  Google Scholar 

  27. S. Matsuzaki and V. Zazubovich and N. J. Fraser and R. J. Cogdell and G. J. Small, Energy transfer dynamics in LH2 complexes of Rhodopseudomonas acidophila containing only one B800 molecule, J. Phys. Chem. B, 2001, 105, 7049.

    Article  CAS  Google Scholar 

  28. T. Ritz and X. Hu and A. Damjanovic and K. Schulten, Excitons and excitation transfer in the photosynthetic unit of purple bacteria, J. Lumin, 1998, 76&77, 310.

    Article  CAS  Google Scholar 

  29. P. Herman and U. Kleinekathöfer and I. Barvik and M. Schreiber, Exciton scattering in light-harvesting systems of purple bacteria, J. Lumin, 2001, 94-95, 447.

    Article  Google Scholar 

  30. M. A. Palacios, F L. de Weerd and J. A. Ihalainen and R. van Grondelle and H. van Amerongen, Superradian ce and exciton (de)localisation in Light-Harvesting Complex II from green plants?, J. Phys. Chem. B, 2002, 106, 5782.

    Article  CAS  Google Scholar 

  31. S. Tretiak and V. Chernyak and S. Mukamel, Localised electronic excitations in phenylacetylene dendrimers, J. Phys. Chem. B, 1998, 102, 3310.

    Article  CAS  Google Scholar 

  32. E. Y. Poliakov and S. Tretiak and V. Chernyak and S. Mukamel, Exciton-scaling and optical excitation of self-similar phenylacetylene dendrimers, / Chem. Phys, 1999, 110, 8161.

    CAS  Google Scholar 

  33. T. Minami and S. Tretiak and V. Chernyak and S. Mukamel, Frenkel-exciton Hamiltonian for dendrimeric nanostars, J. Lumin, 2000, 87-89, 115.

    Article  CAS  Google Scholar 

  34. V. A. Morozov, On the theory of frequency-shifted secondary emission of light-harvesting molecular systems, Opt. Spectrosc, 2001, 91, 30.

    Article  CAS  Google Scholar 

  35. V. A. Morozov, On the theory of dissipative interaction between chromophores in a bichromophore molecule, Russ J. Phys. Chem., 2001, 75, 246.

    Google Scholar 

  36. R. D. Jenkins and D. L. Andrews, Multichromophore excitons and resonance energy transfer: Molecular quantum electrodynamics, J. Chem. Phys., accepted.

  37. C3 is the rotational sub-group of D3h; the full symmetry of the latter point group does not generally hold for the model photosystem of Fig. 1 once the symmetry of the constituent chromophores is entertained.

  38. G. Juzeliunas and D. L. Andrews, Quantum electrodynamics of resonance energy transfer, Adv. Chem. Phys, 2000, 112, 357.

    CAS  Google Scholar 

  39. B. W. Van der Meer, in Resonance Energy Transfer, ed. D. L. Andrews and A. A. Demidov, John Wiley and Son, Chichester, 1999.

  40. B. W. van der Meer, Kappa-squared: from nuisance to new sense, Rev. Mol Biotech., 2002, 82, 181.

    Article  Google Scholar 

  41. M. Kasha and H. R. Rawls and M. A. El-Bayoumi, The exciton model in molecular spectroscopy, Pure and Appl. Chem., 1965, 11, 371.

    Article  CAS  Google Scholar 

  42. R. E. Dale and J. Eisinger and W. E. Blumberg, The orientational freedom of molecular probes, Biophys. J., 1979, 26, 161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, R.D., Andrews, D.L. Exciton resonance energy transfer: Effects of geometry and transition moment orientation in model photosystems. Photochem Photobiol Sci 2, 130–135 (2003). https://doi.org/10.1039/b209449e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b209449e

Navigation