Skip to main content
Log in

Temperature-sensitive photochemical aromatic substitution on 4-nitroanisole

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A temperature-sensitive photochemical nucleophilic aromatic substitution on 4-nitroanisole by a hydroxide ion in homogeneous solutions, in a two-phase system under phase-transfer catalysis conditions, and in the microwave field is reported. It was found that reaction regioselectivity dramatically changes with temperature in the region of −20 to 196 °C. The quantum yield of the 4-methoxyphenol formation was found to be temperature independent, in contrast to that of the 4-nitrophenol formation, suggesting that there is a temperature dependent process occurring after the partitioning between replacement of the nitro group and the methoxy group has taken place. The reaction was also investigated by using quantum chemical calculations. A technique for microwave-assisted photochemical synthesis is proposed as an efficient and practical tool for organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cornelisse, in CRC Handbook of Organic Photochemistry, Photobiology, eds W. M. Horpool and P.-S. Song, CRC Press, Boca Raton, 1995, p. 250–265.

  2. J. Cornelisse, G. Lodder, E. Havinga, Pathways and intermediates of nucleophilic aromatic photosubstitution reactions, Rev. Chem. Intermed., 1979, 2, 231–265.

    Article  CAS  Google Scholar 

  3. J. Cornelisse, E. Havinga, Photosubstitution reactions of aromatic compounds, Chem. Rev., 1975, 75, 353–388.

    Article  CAS  Google Scholar 

  4. C. Parkanyi, Aromatic photosubstitutions, Pure. Appl. Chem., 1983, 55, 331–341.

    Article  CAS  Google Scholar 

  5. S. Nilsson, Direct cyanation of aromatic compounds. II. Comparison of isomer distributions from different cyanation methods, Acta. Chem. Scand., 1973, 27, 329–335.

    Article  CAS  Google Scholar 

  6. J. Den Heijer, O. B. Shadid, J. Cornelisse, E. Havinga, Photoreactions of aromatic compounds. XXXV. Nucleophilic photosubstitution of methoxy substituted aromatic compounds. Monophotonic ionization of the triplet, Tetrahedron, 1977, 33, 779–786.

    Article  Google Scholar 

  7. H. C. H. A. van Riel, G. Lodder, E. Havinga, Photochemical methoxide exchange in some nitromethoxybenzenes–the role of the nitro-group in SN2Ar* reactions, J. Am. Chem. Soc., 1981, 103, 7257–7262.

    Article  Google Scholar 

  8. E. Havinga, J. Cornelisse, Aromatic photosubstitution reactions, Pure Appl. Chem., 1976, 47, 1–10.

    Article  CAS  Google Scholar 

  9. E. Havinga, R. O. de Jongh, Photochemical reactions of nitrophenyl esters and ethers, Bull. Soc. Chim. Belg., 1962, 71, 803–810.

    Article  CAS  Google Scholar 

  10. R. L. Letsinger, O. B. Ramsey, J. H. McCain, Photoinduced substitution. II. Substituent effects in nucleophilic displacement on substituted nitrobenzenes, J. Am. Chem. Soc., 1965, 87, 2945–2953.

    Article  CAS  Google Scholar 

  11. S. de Vries, E. Havinga, Photoreactions of aromatic compounds. V. Products isolated from the irradiation of mixtures of p-nitroanisole and allyl p-nitrophenyl ether in 0.1N NaOH, Recl. Trav. Chim. Pays-Bas, 1965, 84, 601–602.

    Article  Google Scholar 

  12. M. Sawaura, T. Mukai, Organic-photochemistry. 50 photochemical nucleophilic-substitution reactions of methyl-substituted derivatives of para-nitroanisole and ortho-nitroanisole, Bull. Chem. Soc. Jpn., 1981, 54, 3213–3214.

    Article  CAS  Google Scholar 

  13. P. T. Anastas and J. C. Warner, In Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998, p. 30.

    Google Scholar 

  14. C. M. Starks,, C. L. Liotta, and M. Halpern, In Phase-transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives, Chapman and Hall, New York, 1994.

    Book  Google Scholar 

  15. A. Guarini, P. Tundo, Rose-bengal functionalized phase-transfer catalysts promoting photooxidations with singlet oxygen-nucleophilic displacements on dioxetanic and endoperoxidic intermediates, J. Org. Chem., 1987, 52, 3501–3508.

    Article  CAS  Google Scholar 

  16. J. J. Brunet, C. Sidot, P. Caubere, Sunlamp-irradiated phase-transfer catalysis. 1. Cobalt carbonyl catalyzed SRN1 carbonylations of aryl and vinyl halides, J. Org. Chem., 1983, 48, 1166–1171.

    Article  CAS  Google Scholar 

  17. S. Shimada, K. Nakagawa, K. Tabuchi, Photopolymerization of methyl-methacrylate with 1-benzyl-1,4-dihydronicotinamide in the presence of carbon-tetrachloride, Polym. J., 1989, 21, 275–279.

    Article  CAS  Google Scholar 

  18. S. Shimada, Y. Obata, K. Nakagawa, K. Tabuchi, Photopolymerization of methyl-methacrylate with methyl viologen-Na2S2O4-CCl4 in aqueous-organic, 2 phase system, Polym. J., 1990, 22, 777–780.

    Article  CAS  Google Scholar 

  19. R. Maidan, I. Willner, Photochemical and chemical enzyme catalyzed debromination of meso-1,2-dibromostilbene in multiphase systems, J. Am. Chem. Soc., 1986, 108, 1080–1082.

    Article  CAS  Google Scholar 

  20. P. Klán, J. Literák, M. Hájek, The electrodeless discharge lamp: a prospective tool for photochemistry, J. Photochem. Photobiol. A, 1999, 128, 145–149.

    Article  Google Scholar 

  21. J. Literák, P. Klán, The electrodeless discharge lamp: a prospective tool for photochemistry–Part 2. Scope and limitation, J. Photochem. Photobiol. A, 2000, 137, 29–35.

    Article  Google Scholar 

  22. P. Klán, M. Hájek, V. Církva, The electrodeless discharge lamp: a prospective tool for photochemistry Part 3. The microwave photochemistry reactor, J. Photochem. Photobiol. A, 2001, 140, 185–189.

    Article  Google Scholar 

  23. P. Klán, J. Literák, S. Relich, Molecular photochemical thermometers: investigation of microwave superheating effects by temperature dependent photochemical processes, J. Photochem. Photobiol. A, 2001, 143, 49–57.

    Article  Google Scholar 

  24. S. Chemat, A. Aouabed, P. V. Bartels, D. C. Esveld, F. Chemat, An original microwave-ultra violet combined reactor suitable for organic synthesis and degradation, Journal of Microwave Power and Electromagnetic Energy, 1999, 34, 55–60.

    Article  Google Scholar 

  25. The effective power of the oven in the position of the reaction vessel was experimentally found to be approximately 300 W according to: K. W. Watkins, Heating in microwave-ovens–an example of dipole-moments in action, J. Chem. Educ., 1983, 60, 1043.

    Article  CAS  Google Scholar 

  26. S. Caddick, Microwave-assisted organic-reactions, Tetrahedron, 1995, 51, 10403–10432.

    Article  CAS  Google Scholar 

  27. R. A. Abramovitch, Applications of microwave-energy in organic-chemistry–a review, Org. Prep. Proced. Int., 1991, 23, 685–711.

    Article  Google Scholar 

  28. D. M. P. Mingos, D. R. Baghurst, Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 1991, 20, 1–47.

    Article  CAS  Google Scholar 

  29. D. R. Baghurst, D. M. P. Mingos, Superheating effects associated with microwave dielectric heating, J. Chem. Soc., Chem. Commun., 1992, 674–677.

    Google Scholar 

  30. C. A. G. O. Varma, J. J. Tamminga, J. Cornelisse, Mechanistic and kinetic aspects of the photoinduced OCH3 substitution in 3,5-dinitroanisole–a probe for solvent effects in thermal-reactions, J. Chem. Soc., Faraday Trans., 1982, 78, 265–284.

    Article  CAS  Google Scholar 

  31. P. H. M. Van Zeijl, L. M. J. van Eijk, C. A. G. O. Varma, Spectroscopic and kinetic-study of the photoinduced methoxy substitution of 3-nitroanisole and 3,5-dinitroanisole, J. Photochem., 1985, 29, 415–433.

    Article  Google Scholar 

  32. K. Mutai, R. Nakagaki, H. Tukada, Photoinduced intramolecular substitution. 4. a rationalization of orientation in nucleophilic aromatic photosubstitution, Bull. Chem. Soc. Jpn., 1985, 58, 2066–2071.

    Article  CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 98 (Revision A.9), Gaussian, Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  34. S. D. Naik, L. K. Doraiswamy, Phase transfer catalysis: Chemistry and engineering, AIChE J., 1998, 44, 612–646.

    Article  CAS  Google Scholar 

  35. V. Dragojlovic, D. Bin Gao, Y. L. J. Chow, Multigram scale cobalt catalyzed photochemical methoxycarbonylation of alkenes, J. Mol. Catal. A: Chem., 2001, 171, 43–51.

    Article  CAS  Google Scholar 

  36. R. Beugelmans, H. Ginsburg, A. Lecas, M.-T. Le Goff, G. Roussi, Use of phase transfer agents for photocyanation of aromatic hydrocarbons, Tetrahedron Lett., 1978, 35, 3271–3274.

    Article  Google Scholar 

  37. R. Beugelmans, H. Ginsburg, A. Lecas, M.-T. Le Goff, J. Pusset, G. Roussi, Use of tetrabutylammonium cyanide for photocyanation of aromatic compounds: phase transfer photochemistry, J. Chem. Soc., Chem. Commun., 1977, 23, 885–886.

    Article  Google Scholar 

  38. R. Růžička, M. Zabadal, P. Klán, Photolysis of phenacyl esters in a two-phase systém, Synth. Commun., 2002, 32, 2581–2590.

    Article  CAS  Google Scholar 

  39. S. A. Galema, Microwave chemistry, Chem. Soc. Rev., 1997, 26, 233–238.

    Article  CAS  Google Scholar 

  40. R. Dagani, Molecular magic with microwaves, Chem. Eng., 1997, 75, 26–33.

    Google Scholar 

  41. L. Perreux, A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron, 2001, 57, 9199–9223.

    Article  CAS  Google Scholar 

  42. P. Klán, and V. Církva, Microwave Photochemistry, in: Microwaves in Organic Synthesis, ed. A. Loupy, Wiley-VCH, 2002.

  43. E. Den Besten, J. W. Tracy, Electrodelessly discharged photochemical lamps, J. Chem. Edu., 1973, 50, 303–303.

    Article  Google Scholar 

  44. V. Církva, M. Hájek, Microwave photochemistry. Photoinitiated radical addition of tetrahydrofuran to perfluorohexylethene under microwave irradiation, J. Photochem. Photobiol. A, 1999, 123, 21–23.

    Article  Google Scholar 

  45. F. Chemat, E. Esveld, Microwave super-heated boiling of organic liquids: Origin, effect and application, Chem. Eng. Technol., 2001, 24, 735–744.

    Article  CAS  Google Scholar 

  46. R. Saillard, M. Poux, J. Berlan, M. Audhuy-Peaudecerf, Microwave-heating of organic-solvents–thermal effects and field modeling, Tetrahedron, 1995, 51, 4033–4042.

    Article  CAS  Google Scholar 

  47. A. Stadler, C. O. Kappe, The effect of microwave irradiation on carbodiimide-mediated esterifications on solid support, Tetrahedron, 2001, 57, 3915–3920.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Klán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klán, P., Růžička, R., Heger, D. et al. Temperature-sensitive photochemical aromatic substitution on 4-nitroanisole. Photochem Photobiol Sci 1, 1012–1016 (2002). https://doi.org/10.1039/b209010d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b209010d

Navigation