Skip to main content

Advertisement

Log in

Variations in efficiencies of triplet state and exciplex formation following fluorescence quenching of 9,10-dicyanoanthracene due to charge transfer interactions

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Data is presented on the quenching of 9,10-dicyanoanthracene by benzene derivatives in acetonitrile. The quenching occurs via a charge transfer mechanism with the quenching rate constants exhibiting a Rehm–Weller dependence on the free energy change of the electron transfer reaction. The quenching of the prompt fluorescence brings about an increase in the delayed fluorescence of DCA as a result of intersystem crossing in the exciplex, and a modified Wilkinson’s plot has been used to determine the efficiency of triplet formation during the quenching of DCA fluorescence by benzene derivatives. We suggest that intersystem crossing yields in the exciplex are unity, and variations in triplet state yields as a result of singlet state quenching reflect partitioning between exciplex formation and solvent-separated radical ion pair (SSRIP) formation. The data clearly show competition between exciplex formation and SSRIP formation, with the latter becoming dominant when the free energy for electron transfer exceeds the solvent reorganisation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Kavarnos, N. J. Turro, Photosensitization by reversible electron transfer: Theories, experimental evidence, and examples, Chem. Rev., 1986, 86, 401.

    Article  CAS  Google Scholar 

  2. M. A. Fox, and M. A. Channon, Photoinduced Electron Transfer, Elsevier: Amsterdam, 1988.

    Google Scholar 

  3. D. Rehm and A. Weller, Kinetics of fluorescence quenching by electron and H-atom transfer, Isr. J. Chem., 1970, 8, 259.

    Article  CAS  Google Scholar 

  4. A. Weller, Photoinduced electron-transfer in solution—exciplex and radical ion-pair formation free enthalpies and their solvent dependence, Z. Phys. Chem. Wiesbaden, 1982, 133, 93.

    Article  CAS  Google Scholar 

  5. A. Weller, Exciplex and radical pairs in photochemical electron-transfer, Pure Appl. Chem., 1982, 54, 1885.

    Article  CAS  Google Scholar 

  6. H. Masuhara and N. Mataga, Ionic photo-dissociation of electron-donor—acceptor systems in solution, Acc. Chem. Res., 1981, 14, 312.

    Article  CAS  Google Scholar 

  7. N. Mataga, Photochemical charge-transfer phenomena—picosecond laser photolysis studies, Pure Appl. Chem., 1984, 56, 1255.

    Article  CAS  Google Scholar 

  8. K. Kikuchi, A new aspect of photoinduced electron-transfer in acetonitrile, J. Photochem. Photobiol., A, 1992, 65, 149.

    Article  CAS  Google Scholar 

  9. K. Kikuchi, T. Niwa, Y. Takahashi, H. Ikeda, T. Miyashi and M. Hoshi, Evidence of exciplex formation in acetonitrile, Chem. Phys. Lett., 1990, 173, 421.

    Article  CAS  Google Scholar 

  10. K. Kikuchi, Y. Takahashi, M. Hoshi, T. Niwa, T. Katagiri and T. Miyashi, Free enthalpy dependence of free-radical yield of photoinduced electron-transfer in acetonitrile, J. Phys. Chem., 1991, 95, 2378.

    Article  CAS  Google Scholar 

  11. I. R. Gould, R. H. Young and S. Farid, Dynamics of photoinduced electron transfer in solution in Honda, K. Photochemical processes in organized molecular systems, Amsterdam, Elsevier Science Publ., 1991, pp. 19–40.

    Book  Google Scholar 

  12. I. R. Gould, R. H. Young, L. J. Mueller and S. Farid, Mechanisms of exciplex formation—roles of superexchange, solvent polarity, and driving-force for electron-transfer, J. Am. Chem. Soc., 1994, 116, 8176.

    Article  CAS  Google Scholar 

  13. I. R. Gould, D. Ege, J. E. Moser and S. Farid, Efficiencies of photoinduced electron-transfer reactions—role of the marcus inverted region in return electron-transfer within geminate radical-ion pairs, J. Am. Chem. Soc., 1990, 112, 4290.

    Article  CAS  Google Scholar 

  14. I. R. Gould, R. H. Young, R. E. Moody and S. Farid, Contact and solvent-separated geminate radical ions pairs in electron-transfer photochemistry, J. Phys. Chem., 1991, 95, 2068.

    Article  CAS  Google Scholar 

  15. W. S. Chung, N. J. Turro, I. R. Gould and S. Farid, Effect of external-pressure on photoinduced electron-transfer reactions in the marcus inverted region, J. Phys. Chem., 1991, 95, 7752.

    Article  CAS  Google Scholar 

  16. E. Vauthey, Effect of steric hindrance on the dynamics of charge recombination within geminate ion pairs, J. Phys. Chem. A, 2000, 104, 1804.

    Article  CAS  Google Scholar 

  17. E. Vauthey, Investigation of the photoinduced electron transfer reaction between 9,10-dicyanoanthracene and 1-methylnaphthalene in acetonitrile using picosecond transient grating spectroscopy, J. Phys. Chem. A, 1997, 101, 1635.

    Article  CAS  Google Scholar 

  18. T. Niwa, K. Kikuchi, N. Matsusita, M. Hayashi, T. Katagiri, Y. Takahashi and T. Miyashi, Solvent effects on photoinduced electron-transfer reactions, J. Phys. Chem., 1993, 97, 11960.

    Article  CAS  Google Scholar 

  19. S. Iwai, S. Murata, R. Katoh, M. Tachiya, K. Kikuchi and Y. Takahashi, Ultrafast charge separation and exciplex formation induced by strong interaction between electron donor and acceptor at short distances, J. Chem. Phys., 2000, 112, 7111.

    Article  CAS  Google Scholar 

  20. P. Jacques and D. Burget, On the necessity of distinguishing “n” from “π” quenchers in electron transfer studies, J. Photochem. Photob., A, 1992, 68, 165.

    Article  CAS  Google Scholar 

  21. P. Jacques, E. Haselbach, A. Henseler, D. Pilloud and P. Suppan, Multiple Rehm-Weller plots in the electron-transfer quenching of singlet excited 9,10-dicyanoanthracene, J. Chem.Soc., Faraday Trans., 1991, 87, 3811.

    Article  CAS  Google Scholar 

  22. D. Burget, P. Jacques, E. Vauthey, P. Suppan and E. Haselbach, Marcus inverted region—nature of donor–acceptor pairs and free-ion yields, J. Chem. Soc., Faraday Trans., 1994, 90, 2481.

    Article  CAS  Google Scholar 

  23. E. Vauthey, D. Pilloud, E. Haselbach, P. Suppan and P. Jacques, The reliability of free-ion yield in photoinduced electron-transfer reactions—the model system 9,10-dicyanoanthracene biphenyl in acetonitrile, Chem. Phys. Lett., 1993, 215, 264.

    Article  CAS  Google Scholar 

  24. E. A. Chandros and J. Ferguson, Absorption and fluorescence of sandwich dimers. Theory of the excimer state, J. Chem. Phys., 1966, 45, 397.

    Article  Google Scholar 

  25. S. E. Mylon, S. N. Smirnov and C. L. Braun, Exciplex dipole moments: Cyanoanthracene acceptors and methyl-substituted benzene donors, J. Phys. Chem. A, 1998, 102, 6558.

    Article  CAS  Google Scholar 

  26. A. F. Olea, D. Worrall, F. Wilkinson, S. L. Williams and A. A. Abdel-Shafi, Solvent effects on the photophysical properties of 9,10-dicyanoanthracene, Phys. Chem. Chem. Phys., 2002, 4, 1615.

    Article  Google Scholar 

  27. A. R. Horrocks, A. Kearvell, K. Tickle and F. Wilkinson, Mechanism of fluorescence quenching in solution. Part 2. Quenching by xenon and intersystem crossing efficiencies, Trans. Faraday Soc., 1966, 528, 3393.

    Article  Google Scholar 

  28. C. A. Parker, Delayed Fluorescence and Phosphorescence, ed. A. B. Zahlan, The Triplet State, 1st edn., Cambridge, Cambridge University Press, Cambridge, 1967, pp. 353–390.

    Google Scholar 

  29. Progress in Reaction Kinetics 5, ed. J. B. Birks and G. Porter, Pergamon Press, Oxford, 1970, p. 181.

    Google Scholar 

  30. J. B. Birks, Photophysics of Aromatic Molecules, John Wiley, New York, 1970.

    Google Scholar 

  31. K. Kikuchi, M. Hoshi, T. Niwa, Y. Takahashi and T. Miyashi, Heavy-atom effects on the excited singlet-state electron- transfer reaction, J. Phys. Chem., 1991, 95, 38.

    Article  CAS  Google Scholar 

  32. I. R. Gould, R. H. Young, L. J. Mueller, A. C. Albrecht and S. Farid, Electronic-structures of exciplexes and excited charge-transfer complexes, J. Am. Chem. Soc., 1994, 116, 8188.

    Article  CAS  Google Scholar 

  33. P. Jacques, X. Allonas, P. Suppan and M. Von Raumer, The interplay between steric hindrance and exergonicity in the rates of excited state quenching, J. Photochem. Photobiol., A, 1996, 101, 183–184.

    Article  CAS  Google Scholar 

  34. J. O. Howell, J. M. Goncalves, C. Amatore, L. Klasinc, R. M. Wightman and J. K. Kochi, Electron transfer from aromatic hydrocarbons and their p-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968–3976.

    Article  CAS  Google Scholar 

  35. T. N. Inada, C. S. Miyazawa, K. Kikuchi, M. Yamauchi, T. Nagata, Y. Takahashi, H. Ikeda and T. Miyashi, Effects of molecular charge on photoinduced electron transfer, J. Am. Chem. Soc., 1999, 121, 7211–7219.

    Article  CAS  Google Scholar 

  36. C. K. Mann and K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, New York, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Worrall.

Additional information

Dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olea, A.F., Worrall, D.R. & Wilkinson, F. Variations in efficiencies of triplet state and exciplex formation following fluorescence quenching of 9,10-dicyanoanthracene due to charge transfer interactions. Photochem Photobiol Sci 2, 212–217 (2003). https://doi.org/10.1039/b207748e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b207748e

Navigation