Skip to main content
Log in

Photoelectrochemical dechlorination of phenols

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photoelectrochemical reductions of 4-chlorophenol and 2,4-dichlorophenol are studied in acetonitrile solution at platinum electrodes. The photoelectrochemical reduction follows a CE-type mechanism with the electrochemical step being the formation of dihydrogen. The photochemistry arises from the excitation of the chlorophenolate anion with subsequent loss of chloride, so suggesting green routes based on photons and electricity only, applicable in both aqueous and non-aqueous solution for the dechlorination of chlorophenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. R. G. Compton and R. A. W. Dryfe, Photoelectrochemical studies, Prog. React. Kinet., 1995, 20, 245–307.

    CAS  Google Scholar 

  2. R. G. Compton, R. A. W. Dryfe and J. C. Eklund, Photoelectrochemical dynamics, Res. Chem. Kinet., 1993, 1, 239–306.

    Article  CAS  Google Scholar 

  3. W. M. Leslie, R. G. Compton and T. Silk, Photoelectrochemical reaction mechanisms: the photoelectrocatalytics reduction of 4-chlorobiphenyl, J. Phys. Chem., 1996, 100, 20114–21.

    Article  CAS  Google Scholar 

  4. W. M. Leslie, R. G. Compton and T. Silk, Photoelectrochemical reaction mechanisms: the reduction of benzophenone and 4-halobenzophenones, J. Electroanal. Chem., 1997, 424, 165–71.

    Article  CAS  Google Scholar 

  5. S. Tori, Electroorganic Synthesis, parts 1 and 2, Kodansha, Tokyo, 1986 and 1987.

    Google Scholar 

  6. Drinking Water Standards and Health Advisories, Summer 2000, US Environmental Protection Agency, 2000.

  7. Water Resources, England and Wales - The Surface Waters (Abstraction for Drinking Water), Statutory Instruments 1996/3001, 1996.

  8. Water Resources, England and Wales - The Surface Waters (Danger Substances), Statutory Instruments 1998/389, 1998.

  9. A. J. Saterlay, J. S. Foord and R. G. Compton, An ultrasonicallyfacilitated boron-doped-diamond voltammetric sensor for analysis of the priority pollutant 4-chlorophenol, Electroanalysis, 2001, 13, 1065–70.

    Article  CAS  Google Scholar 

  10. C. Prado, G. G. Murcott, F. Marken, J. S. Foord and R. G. Compton, Detection of chlorophenols in aqueous solutions via hydrodynamic channel flow cell voltammetry using a boron-doped diamond electrode, Electroanalysis, 2002, 14, 975–9.

    Article  CAS  Google Scholar 

  11. T. J. Kemp, P. R. Unwin and L. Vincze, Photogenerated chloride ion concentration near the surface of UV-irradiated titanium dioxide in the presence of 2,4-dichlorophenol probed using an ultramicroelectrode, J. Chem. Soc., Faraday Trans., 1995, 91, 3893–6.

    Article  CAS  Google Scholar 

  12. S. Ahmed, C. E. Jones, T. J. Kemp and P. R. Unwin, The role of mass transfer in solution photocatalysis at a supported titanium dioxide surface, Phys. Chem. Chem. Phys., 1999, 1, 5229–33.

    Article  CAS  Google Scholar 

  13. A. L. Linsebigler, G. Lu and J. T. Yates, Jr., Photocatalysis on titanium dioxide surfaces: principles, mechanisms and selected results, Chem. Rev., 1995, 95, 735–58.

    Article  CAS  Google Scholar 

  14. K. Oudjehani and P. Boule, Photoreactivity of 4-chlorophenol in aqueous solution, J. Photochem. Photobiol. A, 1992, 68, 363–73.

    Article  CAS  Google Scholar 

  15. T. Pandiyan, O. M. Rivas, J. O. Martínez, G. B. Amezcua and M. A. Martínez-Carrillo, Comparison of methods for the photochemical degradation of chlorophenols, J. Photochem. Photobiol. A, 2002, 146, 149–55.

    Article  CAS  Google Scholar 

  16. N. Akai, S. Kudoh, M. Takayanagi and M. Nakata, Photoreaction mechanisms of 2-chlorophenol and its multiple chlorosubstituted derivatives studied by low temperature matrix-isolation infrared spectroscopy and density-functional-theory calculations, J. Photochem. Photobiol. A, 2001, 146, 49–57.

    Article  CAS  Google Scholar 

  17. M. Sharp, Determination of the charge-transfer kinetics of ferrocene at platinum and vitreous carbon electrodes by potential step chronocoulometry, Electrochim. Acta, 1983, 28, 301–8.

    Article  CAS  Google Scholar 

  18. P. R. Unwin, R. G. Compton, in The use of channel electrodes in the investigation of interfacial reaction mechanisms, Comprehensive Chemical Kinetics, ed. R. G. Compton, vol. 29, Elsevier, Amsterdam, 1989, p. 173–296.

    Article  CAS  Google Scholar 

  19. J. A. Cooper and R. G. Compton, Channel electrodes: a review, Electroanalysis, 1998, 10, 141–55.

    Article  CAS  Google Scholar 

  20. G. Macfie, J. D. Wadhawan and R. G. Compton, Photoelectrochemical reduction of chlorinated nitrobenzenes: heavy atom versus radical ion lifetime effects, J. Electroanal. Chem., 2001, 510, 120–7.

    Article  CAS  Google Scholar 

  21. M. B. G. Pilkington, B. A. Coles and R. G. Compton, Construction of an optically-transparent thin-layer-electrode cell for use with oxygen sensitive species in aqueous and non-aqueous solvents, Anal. Chem., 1989, 61, 1787–9.

    Article  CAS  Google Scholar 

  22. C. R. Wilke and P. Chang, Correlation of diffusion coefficients in dilute solution, Am. Inst. Chem. Eng. J., 1955, 1, 264–70.

    Article  CAS  Google Scholar 

  23. W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford, 1996, p. 87 f.f.

    Book  Google Scholar 

  24. S. Treimer, A. Tang and D. C. Johnson, A consideration of the application of Koutecky-Levich plots in the diagnoses of chargetransfer mechanisms at rotating disc electrodes, Electroanalysis, 2002, 14, 165–71.

    Article  CAS  Google Scholar 

  25. W. Vielstich, D. Jahn The use of the rotating disc electrode in the study of rapid reactions in solutions, Advan. Polarog., Proc. Intern. Congr., 2nd, Cambridge, England, 1959 (1960), 1, 281–7.

    Chapter  Google Scholar 

  26. W. J. Albery, Electrode Kinetics, Oxford University Press, London, 1975, p. 125 f.f.

    Google Scholar 

  27. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001, p. 334.

    Google Scholar 

  28. See for example: eds. J. M. Kamlet, H. E. Ungnade, Organic Electronic Spectra, vol. 1–31, Wiley, New York, 1946–1989.

  29. Y. L. Chow and Z. Z. Wu, Photonitrosation promoted by enhanced acidity of singlet-state phenols, J. Am. Chem. Soc., 1985, 107, 3338–70.

    Article  CAS  Google Scholar 

  30. F. D. Saeva and G. R. Olin, Utilisation of excited pK’s to initiate a ground state chemical reaction, J. Am. Chem. Soc., 1975, 97, 5631–2.

    Article  CAS  Google Scholar 

  31. R. G. Compton, R. A. W. Dryfe and A. C. Fisher, Photoelectrochemical reduction of para-halonitrobenzenes, J. Chem. Soc., Perkin Trans. 2, 1994, 1581–7.

  32. A. B. Pierini, J. S. Duca Jr. and D. M. A. Vera, A theoretical approach to understanding the fragmentation reaction of halonitrobenzene radical anions, J. Chem. Soc., Perkin Trans. 2, 1999, 1003–10.

Download references

Acknowledgements

We thank the EPSRC for financial support via a studentship for J. D. W.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, T.J., Wadhawan, J.D. & Compton, R.G. Photoelectrochemical dechlorination of phenols. Photochem Photobiol Sci 1, 902–906 (2002). https://doi.org/10.1039/b207317j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b207317j

Navigation