Skip to main content
Log in

New dinuclear Ru(ii) complexes containing free chelating polypyridine sites within the bridging ligands: absorption spectra, luminescence properties, redox behavior and sensing properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of dinuclear Ru(ii) polypyridine complexes have been prepared and their absorption spectra and luminescence properties (both at room temperature in acetonitrile fluid solution and at 77 K in butyronitrile rigid matrix) have been investigated. The species studied are [(bpy)2Ru(L1)Ru(bpy)2]4+ (1; bpy = 2,2′-bipyridine), [(tpy)Ru(Ln)Ru(tpy)]4+ (2, Ln = L2; 3, Ln = L3; 4, Ln = L4; tpy = 2,2′:6′,2″-terpyridine; for L1–L4 bridging ligands, see Fig. 1). All the compounds exhibit intense absorption bands in the UV region, assigned to spin-allowed ligand-centered (LC) transitions, and moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) absorption bands in the visible. The compounds also exhibit relatively intense emissions, originating from triplet MLCT levels, both at 77 K and at room temperature. All the new compounds contain a free chelating bipyridine site within their bridging ligand structure, and this confers to the new species interesting properties as far as the effect of perturbation (e.g., addition of acid or zinc salts) on the absorption and luminescence properties is concerned. Indeed, the luminescence intensity of each species is strongly affected by the presence of protons or cations. In particular, upon acid or zinc salts addition the luminescence intensity of 1 decreases, while the luminescence intensity of 2–4 increases. This different behaviour is related to the different dominating pathways for MLCT excited-state decay in Ru(ii) chromophores containing tridentate or bidentate polypyridine ligands. The redox behavior of 1 and 2 has also been investigated in acetonitrile solution in the absence and presence of zinc salts. It has been found that the electronic interaction between the peripheral chromophores is enhanced by zinc coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni, Ruthenium(ii) and osmium(ii) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, photochemical and photophysical properties, Chem. Rev., 1994, 94, 993

    Article  CAS  Google Scholar 

  2. V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Luminescent and redox-active polynuclear transition-metal complexes, Chem. Rev., 1996, 96, 759

    Article  CAS  Google Scholar 

  3. C. A. Bignozzi, J. R. Schoonover, F. Scandola, A supramolecular approach to light harvesting and sensitization of wide-bandgap semiconductors: antenna effects and charge separation, Prog. Inorg. Chem., 1997, 44, 1

    CAS  Google Scholar 

  4. P. Belser, S. Bernhard, C. Blum, A. Beyeler, L. De Cola, V. Balzani, Molecular architecture in the field of photonic devices, Coord. Chem. Rev., 1999, 192, 155.

    Article  Google Scholar 

  5. V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Designing dendrimers based on transition-metal complexes. Light harvesting properties and predetermined redox patterns, Acc. Chem. Res., 1998, 31, 26

    Article  CAS  Google Scholar 

  6. L. Sun, L. Hammarström, B. Akermark, S. Styring, Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production, Chem. Soc. Rev., 2001, 30, 36

    Article  CAS  Google Scholar 

  7. F. Barigelletti, L. Flamigni, Photoactive molecular wires based on metal complexes, Chem. Soc. Rev., 2000, 29, 1.

    Article  CAS  Google Scholar 

  8. R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi, Artificial molecular-level machines: which energy to make them work?, Acc. Chem. Res., 2001, 34, 445

    Article  CAS  Google Scholar 

  9. D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, Octahedral Fe(ii) and Ru(ii) complexes based on a new bis 1,10-phenanthroline ligand that imposes a well defined axis, J. Am. Chem. Soc., 2001, 123, 12215

    Article  CAS  Google Scholar 

  10. C. N. Fleming, K. A. Maxwell, J. M. De Simone, T. J. Meyer, J. M. Papanikolas, Ultrafast excited-state energy migration dynamics in an efficient light-harvesting antenna polymer based on Ru(ii) and Os(ii) polypyridyl complexes, J. Am. Chem. Soc., 2001, 123, 10336

    Article  CAS  Google Scholar 

  11. H. Berglund Baudin, J. Davidsson, S. Serroni, A. Juris, V. Balzani, S. Campagna, L. Hammarström, Ultrafast energy transfer in binuclear ruthenium–osmium complexes as models for light-harvesting antennas, J. Phys. Chem. A, 2002, 106, 4312.

    Article  Google Scholar 

  12. S. Serroni, S. Campagna, F. Puntoriero, C. Di Pietro, F. Loiseau, N. D. McClenaghan, Dendrimers based on ruthenium(ii) and osmium(ii) polypyridine complexes and the approach of using complexes as ligands and complexes as metals, Chem. Soc. Rev., 2001, 30, 367.

    Article  CAS  Google Scholar 

  13. J. N. Demas, G. A. Crosby, Measurement of photoluminescence quantum yields. A review, J. Phys. Chem., 1971, 75, 991.

    Article  Google Scholar 

  14. N. Nakamaru, Photophysical properties of ruthenium(ii) polypyridine complexes, Bull. Chem. Soc. Jpn., 1982, 55, 2697.

    Article  CAS  Google Scholar 

  15. S. Campagna, G. Denti, S. Serroni, A. Juris, M. Venturi, V. Ricevuto, V. Balzani, Dendrimers of nanometer size based on metal complexes. Luminescent and redox-active polynuclear metal complexes containing up to 22 metal centers, Chem. Eur. J., 1995, 1, 211.

    Article  CAS  Google Scholar 

  16. K. O. Johansson, J. A. Lotoski, C. C. Tong, G. S. Hanan, Toward high nuclearity ruthenium complexes: creating new binding sites in metal complexes, Chem. Commun., 2000, 819.

    Google Scholar 

  17. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Ruthenium(ii) polypiridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence, Coord. Chem. Rev., 1985, 84, 85 and references therein.

    Article  Google Scholar 

  18. T. J. Meyer, Photochemistry of MLCT excited states, Pure Appl. Chem., 1986, 58, 1193 and references therein.

    Article  CAS  Google Scholar 

  19. M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, Complexes of the Ruthenium(ii)-2,2′:6′,2″-terpyridine family. Effect of electron-accepting and -donating substituents on the photophysical and electrochemical properties, Inorg. Chem., 1995, 34, 2759

    Article  CAS  Google Scholar 

  20. P. Ceroni, A. Credi, V. Balzani, S. Campagna, G. S. Hanan, C. R. Arana, J.-M. Lehn, Absorption and emission properties of di- and trinuclear ruthenium(ii) rack-type complexes, Eur. J. Inorg. Chem., 1999, 1409.

    Google Scholar 

  21. A. El-ghayoury, A. Harriman, A. Khatyr, R. Ziessel, An unusually shallow distance-dependence for triplet-energy transfer, Angew. Chem. Int. Ed., 2000, 39, 185

    Article  CAS  Google Scholar 

  22. Y. Fang, N. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna, H. Nierengarten, A. Van Doersselaer, A strategy for improving the room temperature luminescence properties of Ru(ii) complexes with tridentate ligands, J. Am. Chem. Soc., 2002, 124, 7912.

    Article  CAS  Google Scholar 

  23. A. Mamo, I. Stefio, M. F. Parisi, A. Credi, M. Venturi, C. Di Pietro, S. Campagna, Luminescent and redox-active iridium(iii)-cyclometalated compounds with terdentate ligands, Inorg. Chem., 1997, 36, 5947.

    Article  CAS  Google Scholar 

  24. C. Di Pietro, S. Serroni, S. Campagna, M. T. Gandolfi, R. Ballardini, S. Fanni, W. Browne, J. G. Vos, Proton controlled intramolecular communication in dinuclear ruthenium(ii) polypyridine complexes, Inorg. Chem., 2002, 41, 2871.

    Article  Google Scholar 

  25. C. Chiorboli, C. A. Bignozzi, F. Scandola, E. Ishow, A. Gourdon, J.-P. Launay, Photophysics of dinuclear Ru(ii) and Os(ii) complexes based on the tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2′″-3′″-j]phenazine (tpphz) bridging ligand, Inorg. Chem., 1999, 38, 2402

    Article  CAS  Google Scholar 

  26. S. Campagna, S. Serroni, S. Bodige, F. M. MacDonnell, Absorption spectra, photophysical properties, and redox behavior of stereochemically pure dendritic ruthenium(ii) tetramers and related dinuclear and mononuclear complexes, Inorg. Chem., 1999, 38, 692

    Article  CAS  Google Scholar 

  27. E. J. C. Olson, D. Hu, A. Hörmann, A. M. Jonkman, M. R. Arkin, A. D. A. Stemp, J. K. Barton, P. F. Barbara, First observation of the key intermediate in the “Light-Switch” mechanism of [Ru(phen)2dppz]2+, J. Am. Chem. Soc., 1997, 119, 11458.

    Article  CAS  Google Scholar 

  28. S. Fanni, C. Di Pietro, S. Serroni, S. Campagna, J. G. Vos, Ni(0) catalysed homo-coupling reactions: a novel route towards the synthesis of multinuclear ruthenium polypyridine complexes featuring made-to-order properties, Inorg. Chem. Commun., 2000, 3, 42.

    Article  CAS  Google Scholar 

  29. G. Giuffrida, S. Campagna, Influence of the peripheral ligands on the metal–metal interaction in dinuclear metal complexes with N-heterocyclic bridging ligands, Coord. Chem. Rev., 1994, 135–136, 517 and references therein.

    Article  Google Scholar 

  30. Y. Ohsawa, M. K. De Armond, K. W. Hanck, D. E. Morris, D. G. Whitten, P. E. Neveux, Spatially isolated redox orbitals: evidence from low-temperature voltammetry, J. Am. Chem. Soc., 1983, 105, 6522.

    Article  CAS  Google Scholar 

  31. Y. Kawanishi, N. Kitamura, Y. Kim, S. Tazuke, Photochemistry of Ru(ii) complexes with polypyridine ligands, Sci. Pap. Inst. Phys. Chem. Res. (Riken Q.), 1984, 78, 212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédérique Loiseau or Garry S. Hanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loiseau, F., Passalacqua, R., Campagna, S. et al. New dinuclear Ru(ii) complexes containing free chelating polypyridine sites within the bridging ligands: absorption spectra, luminescence properties, redox behavior and sensing properties. Photochem Photobiol Sci 1, 982–990 (2002). https://doi.org/10.1039/b206362j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b206362j

Navigation