Skip to main content
Log in

Structure-reactivity relationships in the photoreduction of n,π*-excited ketones and azoalkanes: the effect of reaction thermodynamics, excited-state electrophilicity, and antibonding character in the transition state

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The reaction enthalpies for the photoreduction of n,π*-excited states (acetone, benzophenone, 2,3-diazabicyclo[2.2.2]oct-2-ene, and a 2,3-diazabicyclo[2.2.1]hept-2-ene derivative) by model hydrogen donors (methanol and dimethylamine) were calculated on the basis of a critically evaluated data set of bond dissociation energies for donors and reduced acceptors. These were compared with the observed photoreactivity, which can be assessed through quenching rate constants of the excited states by hydrogen donors. The intriguing observation of a preferential attack at electrophilic hydrogen atoms, i.e., N-H or O-H, by n,π*-excited azoalkanes is rationalised on the basis of the calculated thermochemical data, differences in electrophilicity, and varying contributions of antibonding character in the transition state. Singlet-excited azoalkanes act as nucleophilic species, while excited ketones display an electrophilic reactivity. This is in line with the pictorial description of the electron distribution in these excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Scaiano Intermolecular photoreductions of ketones J. Photochem. 1973 2 81–118

    Article  CAS  Google Scholar 

  2. W. M. Nau Pathways for the photochemical hydrogen abstraction by n,π*-excited states Ber. Bunsen-Ges. Phys. Chem. 1998 102 476–485

    Article  CAS  Google Scholar 

  3. H. E. Zimmerman A new approach to mechanistic organic photochemistry Adv. Photochem. 1963 1 183–208

    Google Scholar 

  4. A. Padwa An alkoxy radical as a model for the n,π* excited state Tetrahedron Lett. 1964 3465–3469

    Google Scholar 

  5. C. Walling and M. J. Gibian Hydrogen abstraction reactions by the triplet states of ketones J. Am. Chem. Soc. 1965 87 3361–3364

    Article  CAS  Google Scholar 

  6. H. S. Johnston and C. Parr Activation energies from bond energies. I. Hydrogen transfer reactions J. Am. Chem. Soc. 1963 85 2544–2551

    Article  CAS  Google Scholar 

  7. C. M. Previtali and J. C. Scaiano The kinetics of photochemical reactions. Part I. Application of a modified bond-energy-bond-order method to the atom abstraction reactions of excited carbonyl compounds J. Chem. Soc., Perkin Trans. 2 1972 1667–1672

    Google Scholar 

  8. S. J. Formosinho, and L. G. Arnaut A unified view of ketone photochemistry Adv. Photochem. 1991 16 67–117

    CAS  Google Scholar 

  9. W. Adam, J. N. Moorthy, W. M. Nau and J. C. Scaiano Photoreduction of azoalkane triplet states by hydrogen atom and charge transfer J. Org. Chem. 1996 61 8722–8723

    Article  CAS  PubMed  Google Scholar 

  10. W. Adam, J. N. Moorthy, W. M. Nau and J. C. Scaiano Photoreduction of azoalkanes by direct hydrogen abstraction from 1,4-cyclohexadiene, alcohols, stannanes, and silanes J. Org. Chem. 1997 62 8082–8090

    Article  CAS  PubMed  Google Scholar 

  11. W. Adam, J. N. Moorthy, W. M. Nau and J. C. Scaiano Charge-transfer-induced photoreduction of azoalkanes by amines J. Am. Chem. Soc. 1997 119 6749–6756

    Article  CAS  Google Scholar 

  12. U. Pischel, X. Zhang, B. Hellrung, E. Haselbach, P.-A. Muller and W. M. Nau Fluorescence quenching of n,π*-excited azoalkanes by amines: what is a sterically hindered amine? J. Am. Chem. Soc. 2000 122 2027–2034

    Article  CAS  Google Scholar 

  13. W. M. Nau, W. Adam and J. C. Scaiano Fluorescence quenching of azoalkanes by solvent-assisted radiationless deactivation involving C-H bonds Chem. Phys. Lett. 1996 253 92–96

    Article  CAS  Google Scholar 

  14. W. M. Nau, G. Greiner, H. Rau, J. Wall, M. Olivucci and J. C. Scaiano Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer J. Phys. Chem. A 1999 103 1579–1584

    Article  CAS  Google Scholar 

  15. U. Pischel and W. M. Nau Quenching of n,π*-excited azoalkanes by amines: structural and electronic effects on charge transfer J. Phys. Org. Chem. 2000 13 640–647

    Article  CAS  Google Scholar 

  16. A. Sinicropi, U. Pischel, R. Basosi, W. M. Nau and M. Olivucci Conical intersections in charge-transfer induced quenching Angew. Chem., Int. Ed. 2000 39 4582–4586

    Article  CAS  Google Scholar 

  17. W. M. Nau, G. Greiner, J. Wall, H. Rau, M. Olivucci and M. A. Robb The mechanism for hydrogen abstraction by n,π* excited singlet states: evidence for thermal activation and deactivation through a conical intersection Angew. Chem., Int. Ed. 1998 37 98–101

    Article  CAS  Google Scholar 

  18. W. M. Nau, G. Greiner, H. Rau, M. Olivucci and M. A. Robb Discrimination between hydrogen atom and proton abstraction in the quenching of n,π* singlet-excited states by protic solvents Ber. Bunsen-Ges. Phys. Chem. 1998 102 486–492

    Article  CAS  Google Scholar 

  19. W. M. Nau n,π* Photochemistry beyond ketones EPA Newsl. 2000 70 6–29

    CAS  Google Scholar 

  20. J. Berkowitz, G. B. Ellison, D. Gutman Three methods to measure RH bond energies J. Phys. Chem. 1994 98 2744–2765

    Article  CAS  Google Scholar 

  21. J. Hine and K. Arata Keto-enol tautomerism. II. The calorimetrical determination of the equilibrium constants for keto-enol tautomerism for cyclohexanone Bull. Chem. Soc. Jpn. 1976 49 3089–3092

    Article  CAS  Google Scholar 

  22. C. Bohne and J. C. Scaiano Thermochemical parameters for molecules and reaction intermediates containing the diphenylmethyl moiety Quim. Nova 1993 16 288–293

    CAS  Google Scholar 

  23. C. W. Bauschlicher and H. Partridge Heat of formation of CH2OH J. Phys. Chem. 1994 98 1826–1829

    Article  CAS  Google Scholar 

  24. D. Griller and F. P. Lossing On the thermochemistry of α-aminoalkyl radicals J. Am. Chem. Soc. 1981 103 1586–1587

    Article  CAS  Google Scholar 

  25. T. J. Burkey, A. L. Castelhano, D. Griller and F. P. Lossing Heats of formation and ionization potentials of some α-aminoalkyl radicals J. Am. Chem. Soc. 1983 105 4701–4703

    Article  CAS  Google Scholar 

  26. D. D. M. Wayner, K. B. Clark, A. Rauk, D. Yu and D. A. Armstrong C-H bond dissociation energies of alkyl amines: radical structures and stabilization energies J. Am. Chem. Soc. 1997 119 8925–8932

    Article  CAS  Google Scholar 

  27. G. W. Dombrowski, J. P. Dinnocenzo, S. Farid, J. L. Goodman and I. R. Gould α-C-H bond dissociation energies of some tertiary amines J. Org. Chem. 1999 64 427–431

    Article  CAS  Google Scholar 

  28. W.-Z. Liu and F. G. Bordwell Gas-phase and solution-phase homolytic bond dissociation energies of N-H+ bonds in the conjugate acids of nitrogen bases J. Org. Chem. 1996 61 4778–4783

    Article  CAS  PubMed  Google Scholar 

  29. P. E. Elford and B. P. Roberts Hydrogen-atom abstraction from dimethylamine in solution: EPR spectroscopic studies and ab initio molecular orbital calculations J. Chem. Soc., Perkin Trans. 2 1998 1413–1422

    Google Scholar 

  30. B. S. Jursic The evaluation of nitrogen containing bond dissociation energies using the ab initio and density functional methods J. Mol. Struct. (THEOCHEM) 1996 366 103–108

    Article  CAS  Google Scholar 

  31. W. M. Nau, F. L. Cozens and J. C. Scaiano Reactivity and efficiency of singlet- and triplet-excited states in intermolecular hydrogen abstraction reactions J. Am. Chem. Soc. 1996 118 2275–2282

    Article  CAS  Google Scholar 

  32. P. J. Wagner, R. J. Truman, A. E. Puchalski and R. Wake Extent of charge transfer in the photoreduction of phenyl ketones by alkylbenzenes J. Am. Chem. Soc. 1986 108 7727–7738

    Article  CAS  PubMed  Google Scholar 

  33. M. J. Mirbach, K.-C. Liu, M. F. Mirbach, W. R. Cherry, N. J. Turro and P. S. Engel Spectroscopic properties of cyclic and bicyclic azoalkanes J. Am. Chem. Soc. 1978 100 5122–5129

    Article  CAS  Google Scholar 

  34. P. S. Engel, D. W. Horsey, D. E. Keys, C. J. Nalepa and L. R. Soltero Photolysis of reluctant azoalkanes. Effect of structure on photochemical loss of nitrogen from 2,3-diazabicyclo[2.2.2]oct-2-ene derivatives J. Am. Chem. Soc. 1983 105 7108–7114

    Article  CAS  Google Scholar 

  35. P. S. Engel, D. W. Horsey, J. N. Scholz, T. Karatsu and A. Kitamura Intramolecular triplet energy transfer in ester-linked bichromophoric azoalkanes and naphthalenes J. Phys. Chem. 1992 96 7524–7535

    Article  CAS  Google Scholar 

  36. R. A. Caldwell, A. M. Helms, P. S. Engel and A. Wu Triplet energy and lifetime of 2,3-diazabicyclo[2.2.2]oct-2-ene J. Phys. Chem. 1996 100 17716–17717

    Article  CAS  Google Scholar 

  37. W. M. Nau, W. Adam, J. C. Scaiano Singlet oxygen production from excited azoalkanes J. Am. Chem. Soc. 1996 118 2742–2743

    Article  CAS  Google Scholar 

  38. W. Adam, G. Fragale, D. Klapstein, W. M. Nau and J. Wirz Phosphorescence and transient absorption of azoalkane triplet states J. Am. Chem. Soc. 1995 117 12578–12592

    Article  CAS  Google Scholar 

  39. W. Adam, J. N. Moorthy, W. M. Nau and J. C. Scaiano Solvent effect on product distribution in photochemical pathways of α C-N versus β C-C cleavage of n,π* triplet-excited azoalkanes J. Am. Chem. Soc. 1997 119 5550–5555

    Article  CAS  Google Scholar 

  40. J. M. Kanabus-Kaminska, B. C. Gilbert and D. Griller Solvent effects on the thermochemistry of free-radical reactions J. Am. Chem. Soc. 1989 111 3311–3314

    Article  CAS  Google Scholar 

  41. E. Buckley, E. F. G. Herington Equilibria in some secondary alcohol + hydrogen + ketone systems Trans. Faraday Soc. 1965 61 1618–1625

    Article  CAS  Google Scholar 

  42. K. B. Wiberg, L. S. Crocker and K. M. Morgan Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups J. Am. Chem. Soc. 1991 113 3447–3450

    Article  CAS  Google Scholar 

  43. L. J. Rothberg, J. D. Simon, M. Bernstein and K. S. Peters Pulsed laser photoacoustic calorimetry of metastable species J. Am. Chem. Soc. 1983 105 3464–3468

    Article  CAS  Google Scholar 

  44. P. E. Poston and J. M. Harris Excited-state calorimetry studies of triplet benzophenone using time-resolved photothermal beam deflection spectroscopy J. Am. Chem. Soc. 1990 112 644–650

    Article  CAS  Google Scholar 

  45. L. G. Arnaut and R. A. Caldwell The heat of formation of the benzophenone ketyl radical by time-resolved photoacoustic calorimetry J. Photochem. Photobiol., A 1992 65 15–20

    Article  CAS  Google Scholar 

  46. R. T. Cambron and J. M. Harris Time-resolved photothermal lens calorimetry for investigating mixed-order photoinitiated reaction kinetics in liquids J. Phys. Chem. 1993 97 13598–13607

    Article  CAS  Google Scholar 

  47. K. Takeda, Y. Kajii, K. Shibuya and K. Obi Heats of formation of intermediate radicals in solution J. Photochem. Photobiol., A 1998 115 109–115

    Article  CAS  Google Scholar 

  48. S. E. Braslavsky and G. E. Heibel Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution Chem. Rev. 1992 92 1381–1410

    Article  CAS  Google Scholar 

  49. D. A. Armstrong, D. Yu and A. Rauk Gas phase and aqueous thermochemistry of hydrazine and related radicals and the energy profiles of reactions with H· and OH·: an ab initio study J. Phys. Chem. A 1997 101 4761–4769

    Article  CAS  Google Scholar 

  50. B. Ruscic and J. Berkowitz Photoionization mass spectrometric study of N2H2 and N2H3: N-H, N-N bond energies and proton affinity of N2J. Chem. Phys. 1991 95 4378–4384

    Article  CAS  Google Scholar 

  51. B. S. Jursic Ab initio and density functional theory study of the diazene isomerization Chem. Phys. Lett. 1996 261 13–17

    Article  CAS  Google Scholar 

  52. Hydrogen abstraction by the carbonyl carbon (“p-orbital induced”) can be excluded, since this reaction is by far less favourable than abstraction by the carbonyl oxygen (“n-orbital induced”). Note that the bond dissociation energy of α C-H in propan-2-ol isca. 69 kJ mol-1 lower than that for O-H (Table 2). As a consequence, the α C-H bond dissociation energy in the 2-propoxyl radical is lower by the same amount than that in the corresponding 2-hydroxypropan-2-yl radical (Table 2). A p-orbital induced hydrogen abstraction by excited azoalkanes, on the other hand, is also unlikely since the resulting lone pair radical lacks the π stabilisation expected for the complementary radical obtained by an n-orbital induced photoreaction (cf. Scheme 2). Indeed, this pathway was not found to be a minimum energy reaction coordinate in high-level quantum-chemical calculations (refs. 17 and 18)

  53. C. G. Shaefer and K. S. Peters Picosecond dynamics of the photoreduction of benzophenone by triethylamine J. Am. Chem. Soc. 1980 102 7566–7567

    Article  Google Scholar 

  54. U. Pischel and W. M. Nau Switch-over in photochemical reaction mechanism from hydrogen abstraction to exciplex-induced quenching: interaction of triplet-excitedversus singlet-excited acetoneversus cumyloxyl radicals with amines J. Am. Chem. Soc. 2001 123 9727–9737

    Article  CAS  PubMed  Google Scholar 

  55. Y. M. A. Naguib, C. Steel, S. G. Cohen and M. A. Young Photoreduction of benzophenone by acetonitrile: correlation of rates of hydrogen abstraction from RH with the ionization potentials of the radicals R· J. Phys. Chem. 1987 91 3033–3036

    Article  CAS  Google Scholar 

  56. R. P. Bell, The Tunnel Effect in Chemistry, Chapman and Hall, London and New York, 1980

    Book  Google Scholar 

  57. E. B. Abuin, M. V. Encinas, E. A. Lissi and J. C. Scaiano Interaction of carbonyl triplets with aliphatic amines J. Chem. Soc., Faraday Trans. 1 1975 71 1221–1229

    Article  CAS  Google Scholar 

  58. Y. Maeda and K. U. Ingold Kinetic applications of electron paramagnetic resonance spectroscopy. 35. The search for a dialkylaminyl rearrangement. Ring opening ofN-cyclobutyl-N-n-propylaminyl J. Am. Chem. Soc. 1980 102 328–331

    Article  CAS  Google Scholar 

  59. A. S. Nazran and D. Griller Hydrogen abstraction from amines: formation of aminyl vs. α-aminoalkyl radicals J. Am. Chem. Soc. 1983 105 1970–1971

    Article  CAS  Google Scholar 

  60. The strongly exothermic reaction energetics of singlet-excited azoalkanes is confirmed by high-levelab initio calculations (CASPT2), which generally provide the energetics of photoinduced hydrogen abstractions within 4 kJ mol-1 error (ref. 17). Accordingly, the reaction enthalpy for hydrogen abstraction by singlet-excited pyrazoline (E* = 343 kJ mol-1) from the O-H bond in methanol was calculated as -84 kJ mol-1 (M. Olivucci, personal communication). For comparison, the value estimated from the data in Table 2 is -88 kJ mol-1. This good agreement also supports the reliability of the thermochemical estimates in Table 2 although these are based on hydrazine rather than azoalkane data

  61. A different transition state for hydrogen abstraction by azoalkanes, in which the two nitrogens interact simultaneously with an abstractable hydrogen, has been previously considered as another possible cause of the higher reactivity (cf. ref. 13). Recent high-level quantum-chemical calculations have provided no evidence for this pathway. Instead, as for excited ketones, the abstraction is initiated by the collinear interaction of one nitrogen lone pair with the H-C or H-Z bond (cf. refs. 17 and 18)

  62. D. Griller, K. U. Ingold Abstraction of the hydroxylic hydrogen of alcohols by alkoxy radicals J. Am. Chem. Soc. 1974 96 630–632

    Article  CAS  Google Scholar 

  63. A. A. Zavitsas, A. A. Melikian Hydrogen abstractions by free radicals. Factors controlling reactivity J. Am. Chem. Soc. 1975 97 2757–2763

    Article  CAS  Google Scholar 

  64. A. A. Zavitsas, C. Chatgilialoglu Energies of activation. The paradigm of hydrogen abstractions by radicals J. Am. Chem. Soc. 1995 117 10645–10654

    Article  CAS  Google Scholar 

  65. T. J. Burkey, M. Majewski, D. Griller Heats of formation of radicals and molecules by a photoacoustic technique J. Am. Chem. Soc. 1986 108 2218–2221

    Article  CAS  PubMed  Google Scholar 

  66. M. Jonsson, J. Lind, T. E. Eriksen and G. Merényi Redox and acidity properties of 4-substituted aniline radical cations in water J. Am. Chem. Soc. 1994 116 1423–1427

    Article  CAS  Google Scholar 

  67. V. F. DeTuri and K. M. Ervin Competitive threshold collision-induced dissociation: gas-phase acidities and bond dissociation energies for a series of alcohols J. Phys. Chem. A 1999 103 6911–6920

    Article  CAS  Google Scholar 

  68. S. Wilsey, P. Dowd and K. N. Houk Effect of alkyl substituents and ring size on alkoxy radical cleavage reactions J. Org. Chem. 1999 64 8801–8811

    Article  CAS  PubMed  Google Scholar 

  69. G. Porter, S. K. Dogra, R. O. Loutfy, S. E. Sugamori and R. W. Yip Triplet state of acetone in solution. Deactivation and hydrogen abstraction J. Chem. Soc., Faraday Trans. 1 1973 69 1462–1474

    Article  CAS  Google Scholar 

  70. M. Okamoto and H. Teranishi Effect of pressure on the primary process of benzophenone photoreduction J. Am. Chem. Soc. 1986 108 6378–6380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pischel, U., Nau, W.M. Structure-reactivity relationships in the photoreduction of n,π*-excited ketones and azoalkanes: the effect of reaction thermodynamics, excited-state electrophilicity, and antibonding character in the transition state. Photochem Photobiol Sci 1, 141–147 (2002). https://doi.org/10.1039/b110108k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b110108k

Navigation