Skip to main content
Log in

Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Samples of pheophorbide-a adsorbed on microcrystalline cellulose, which have been previously characterized in the solid state (M.G. Lagorio, E. San Roman, A. Zeug, J. Zimmermann and B. Röder, Phys. Chem. Chem. Phys., 2001, 3, 1524–1529), were washed with water, leading to stable suspensions of ultrafine particles (d < 2 μm) carrying photoactive, monomeric dye molecules. Detachment can be controlled through the particle size distribution. Suspensions are fluorescent and generate singlet molecular oxygen efficiently. A similar effect has been observed on washing samples containing hematoporphyrin IX adsorbed on the same support. Thus, using cellulose as a heterogeneous carrier, it is possible to introduce hydrophobic photosensitizers into the aqueous medium while avoiding aggregation, thus preserving their photophysical properties. At the same time, the spectroscopic properties of dyes attached to cellulose particles are compared with those in ethanol and ethanol–water mixtures and their differences are explained in terms of medium polarity and dye aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Röder, Photodynamic Therapy, in Encyclopedia Analytical Chemistry, ed. R.A. Meyers, John Wiley & Sons Ltd, Chichester, 2000, pp. 302–320, (invited contribution).

    Google Scholar 

  2. D. Faust, K. H. Funken, G. Horneck, B. Milow, J. Ortner, M. Sattlegger, M. Schäfer and C. Schmitz, Immobilized photosensitizers for solar photochemical applications, Sol. Energy, 1999, 65, 71–74.

    Article  CAS  Google Scholar 

  3. O. Legrini, E. Oliveros and A. M. Braun, Photochemical Processes for Water Treatment, Chem. Rev., 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  4. N. A. García, Singlet-Molecular-Oxygen-Mediated Photodegradation of Aquatic Phenolic Pollutants. A Kinetic and Mechanistic Overview, J. Photochem. Photobiol., B, 1994, 22, 185–196.

    Article  Google Scholar 

  5. Peroxidizing Herbicides, ed. P. Böger and K. Wakabayashi, Springer-Verlag, Berlin, Heidelberg, New York, 1999.

    Google Scholar 

  6. B. Röder, S. Hackbarth, O. Korth, C. Zimmermann, R. Herter, T. Hanke and W. Höhne, Photophysical Properties of Pheophorbide a in Different Carrier-Systems, Proc. SPIE Int. Soc. Opt. Eng., 1996, 2625, 179–186.

    Google Scholar 

  7. B. Röder, T. Hanke, S. Oelckers, S. Hackbarth and C. Symietz, Photophysical Properties of Pheophorbide a in Solution and in Model Membrane Systems, J. Porphyrins Phthalocyanines, 2000, 4, 37–44.

    Article  Google Scholar 

  8. M. E. Daraio, P.F. Aramendía, E. San Román and S.E. Braslavsky, Carboxylated zinc-phthalocyanines. II. Dimerization and singlet molecular oxygen sensitization in hexadecyltrimethylammonium bromide micelles, Photochem. Photobiol., 1991, 54, 367–373.

    Article  CAS  Google Scholar 

  9. M. E. Daraio, P. F. Aramendía and E. San Román, Interaction of singlet and triplet states with the same quencher in micelles, Chem. Phys. Lett., 1993, 204, 415–419.

    Article  CAS  Google Scholar 

  10. M. E. Daraio, P. F. Aramendía and E. San Román, Carboxilated zinc-phthalocyanines. III. Quenching of excited singlet and triplet states by quinones in CTAC micelles, J. Photochem. Photobiol. A, 1994, 77, 41–48.

    Article  CAS  Google Scholar 

  11. M. E. Daraio, P. F. Aramendía and E. San Román, Fluorescence quenching kinetic model for a bound and partitioned quencher in micelles, Chem. Phys. Lett., 1996, 250, 203–208.

    Article  CAS  Google Scholar 

  12. M. E. Daraio, A. Völker, P. F. Aramendía and E. San Román, Reaction of zinc phthalocyanine excited states with amines in cationic micelles, Langmuir, 1996, 12, 2932–2938.

    Article  CAS  Google Scholar 

  13. M. E. Daraio, A. Völker, P. F. Aramendía and E. San Román, Tryptophan quenching of zinc phthalocyanine and porphycene fluorescence in micellar CTAC, Photochem. Photobiol., 1998, 67, 371–377.

    Article  CAS  Google Scholar 

  14. N. G. Angeli, M. G. Lagorio, E. San Román and L. Dicelio, Meso-substituted cationic porphyrins of biological interest. Photophysical and physicochemical properties in solution and bound to liposomes, Photochem. Photobiol., 2000, 72, 49–56.

    Article  CAS  Google Scholar 

  15. J. L. Bourdelande, M. Karzazi, G. Marqués Tura, L. E. Dicelio, M. Litter, E. San Román and V. Vinent, Phthalocyanines bound to insoluble polystyrene. Synthesis and use as energy-transfer photosensitizers, J. Photochem. Photobiol., A, 1997, 108, 273–282.

    Article  CAS  Google Scholar 

  16. M. G. Lagorio, L. E. Dicelio, M. I. Litter and E. San Román, Modeling of fluorescence quantum yields of supported dyes. Aluminium carboxyphthalocyanine on cellulose, J. Chem. Soc., Faraday Trans., 1998, 94, 419–425.

    Article  Google Scholar 

  17. S. Amore, M. G. Lagorio, L. Dicelio and E. San Román, Photophysical properties of supported dyes. Quantum yield calculations in scattering media, Prog. React. Kinet., 2001, 26, 159–177.

    Article  CAS  Google Scholar 

  18. M. E. Daraio and E. San Román, Aggregation and photophysics of rose bengal in alumina-coated silica colloidal suspensions, Helv. Chim. Acta, 2001, 84, 2601–2614.

    Article  CAS  Google Scholar 

  19. B. Röder, Pheophorbides—Individual Data, in Photodynamic tumor therapy: 2nd and 3rd generation photosensitizers for PDT, vol. 1, ed. J. G. Moser, Gordon and Breach Science Publ. LTD, New York, 1998, pp. 35–42.

    Google Scholar 

  20. B. Röder, D. Näther, T. Lewald, M. Braune, C. Nowak and W. Freyer, Photophysical properties and photodynamic activity of some tetrapyrroles in vivo, Biophys. Chem., 1990, 35, 302–312.

    Google Scholar 

  21. M. Aprahamian, S. Evrard, P. Keller, M. Tsuji, G. Balboni, C. Damge and J. Marescaux, Distribution of pheophorbide a in normal tissues and in experimental pancreatic cancer in rats, Anti-Cancer Drug Des., 1993, 8, 101–114.

    CAS  Google Scholar 

  22. S. Hackbarth, V. Horneffer, A. Wiehe, F. Hillenkamp and B. Röder, Photophysical properties of Pheophorbide-a-substituted diaminobutane poly-propylene-imine dendrimer, Chem. Phys., 2001, 269, 339–346.

    Article  CAS  Google Scholar 

  23. I. Eichwurzel, H. Stiel and B. Röder, Photophysical studies of pheophorbide-a dimers, J. Photochem. Photobiol., B, 2000, 54, 194–200.

    Article  CAS  Google Scholar 

  24. B. Röder, C. Zimmermann and R. Herter, Photophysical characterization of far-red absorbing photosensitizers in cyclodextrin solutions, Proc. SPIE Int. Soc. Opt. Eng., 1994, 2325, 80–91.

    Google Scholar 

  25. M. G. Lagorio, E. San Roman, A. Zeug, J. Zimmermann and B. Röder, Photophysics on surfaces: Absorption and luminescence properties of Pheophorbide-a on cellulose, Phys. Chem. Chem. Phys., 2001, 3, 1524–1529.

    Article  Google Scholar 

  26. W. W. Wendlandt and H. G. Hecht, in Reflectance Spectroscopy, Wiley, New York, 1966.

    Google Scholar 

  27. A. Willstätter and R. Stoll, Untersuchungen über Chlorophyll, Springer, Berlin, 1913.

    Book  Google Scholar 

  28. E. Höxtermann, Preparation of water-free Chlorophyll-a, Stud. Biophys., 1978, 72, 203.

    Google Scholar 

  29. O. Korth, T. Hanke and B. Röder, Photophysical Investigations of Langmuir–Blodgett Mono-Layer and Multilayer Films of Pheophorbide-A, Thin Solid Films, 1998, 320, 305–315.

    Article  CAS  Google Scholar 

  30. W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth and B. Röder, Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, J. Porphyrins Phthalocyanines, 1998, 2, 145–158.

    Article  CAS  Google Scholar 

  31. S. Oelckers, T. Ziegler, I. Michler and B. Röder, Time-resolved detection of singlet oxygen luminescence in red cell ghost suspensions: concerning a signal component that can be attributed to 1O2 - luminescence from inside of a native membrane, J. Photochem. Photobiol., B, 1999, 53, 121–127.

    Article  CAS  Google Scholar 

  32. B. Röder and H. Wabnitz, Time-Resolved Fluorescence Spectroscopy of Hematoporphyrin, Mesoporphyrin, Pheophorbide-A and Chlorin-E6 in Ethanol and Aqueous-Solution, J. Photochem. Photobiol., B, 1987, 1, 103–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeug, A., Zimmermann, J., Röder, B. et al. Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water. Photochem Photobiol Sci 1, 198–203 (2002). https://doi.org/10.1039/b109592g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b109592g

Navigation