Skip to main content

Advertisement

Log in

5α-Androstane-3α,17β-diol activates pathway that resembles the epidermal growth factor responsive pathways in stimulating human prostate cancer LNCaP cell proliferation

  • Paper
  • Published:
Prostate Cancer and Prostatic Diseases Submit manuscript

Abstract

5α-Androstane-3α,17β-diol (3α-diol) is considered to have no androgenic effects in androgen target organs unless it is oxidized to 5α-dihydrotestosterone (5α-DHT). We used microarray and bioinformatics to identify and compare 3α-diol and 5α-DHT responsive gene in human prostate LNCaP cells. Through a procedure called ‘hypervariable determination’, a similar set of 30 responsive genes involving signal transduction, transcription regulation, and cell proliferation were selected in 5α-DHT-, 3α-diol-, and epidermal growth factor (EGF)-treated samples. F-means cluster and networking procedures showed that the responsive pattern of these genes was more closely related between 3α-diol and EGF than between 5α-DHT and 3α-diol treatments. We conclude that 3α-diol is capable of stimulating prostate cell proliferation by eliciting EGF-like pathway in conjunction with androgen receptor pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Keenan BS et al. Cytosol androgen receptor (AR) in human skin fibroblasts: characterization of the binding reaction and differentiation from androgen binding molecules of lower affinity. Steroids 1984; 43: 159–178.

    Article  CAS  Google Scholar 

  2. Page MJ, Parker MG . Androgen-regulated expression of a cloned rat prostatic c3 gene transfected into mouse mammary tumor cells. Cell 1983; 32: 495–502.

    Article  CAS  Google Scholar 

  3. Nelson PS et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 2002; 99: 11890–11895.

    Article  CAS  Google Scholar 

  4. Davies P, Eaton CL . Regulation of prostate growth. J Endocrinol 1991; 131: 5–17.

    Article  CAS  Google Scholar 

  5. Bartsch W et al. Enzymes of androgen formation and degradation in the human prostate. Ann NY Acad Sci 1990; 595: 66.

    Article  Google Scholar 

  6. Span PN et al. 3α-Hydroxysteroid oxidoreductase activities in dihydrotestosterone degradation and back-formation in rat prostate and epididymis. J Steroid Biochem Mol Biol 1996; 58: 319–324.

    Article  CAS  Google Scholar 

  7. Penning TM . Moledular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev 1997; 18: 281–305.

    CAS  PubMed  Google Scholar 

  8. Jacobi GH, Moore RJ, Wilson JD . Studies on the mechanism of 3α-androstanediol-induced growth of the dog prostate. Endocrinology 1978; 102: 1748–1755.

    Article  CAS  Google Scholar 

  9. Biswas MG, Russell DW . Expression cloning and characterization of oxidative 17β- and 3α-hydroxysteroid dehydrogenases from rat and human prostate. J Biol Chem 1997; 272: 15959–15966.

    Article  CAS  Google Scholar 

  10. Huang XF, Luu-The V . Characterization of the oxidative 3α-hydroxysteroid dehydrogenase activity of human recombinant 11-cis-retinol dehydrogenase. Biochem Biophys Acta 2001; 1547: 351–358.

    CAS  PubMed  Google Scholar 

  11. He XY et al. Function of human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in androgen metabolism. Biochem Biophys Acta 2000; 1484: 267–277.

    CAS  PubMed  Google Scholar 

  12. Leihy MW et al. Virilization of the urogenital sinus of the tammar wallaby is not unique to 5α-androstane-3α,17β-diol. Mol Cell Endocrinol 2001; 181: 111–115.

    Article  CAS  Google Scholar 

  13. Ding VD et al. Sex hormone-binding globulin mediates prostate androgen receptor action via a novel signaling pathway. Endocrinology 1998; 139: 213–218.

    Article  CAS  Google Scholar 

  14. Jacobi GH, Wilson JD . 3α-Androstanediol and prostatic growth: comparison of 3α-androstanediol formation in prostates from 8 species including man and dog. J Urol 1979; 121: 612–614.

    Article  CAS  Google Scholar 

  15. Walsh PC, Wilson JD . The induction of prostatic hypertrophy in the dog with androstanediol. J Clin Invest 1976; 57: 1093–1097.

    Article  CAS  Google Scholar 

  16. Schultz FM, Wilson JD . Virilization of the Wolffian duct in the rat fetus by various androgens. Endocrinology 1974; 94: 979–986.

    Article  CAS  Google Scholar 

  17. Shaw G et al. Prostate formation in a marsupial is mediated by the testicular androgen 5α-androstane-3α,17β-diol. Proc Natl Acad Sci USA 2000; 97: 12256–12259.

    Article  CAS  Google Scholar 

  18. Nunlist EH et al. Partitioning of 5α-dihydrotestosterone and 5α-androstane-3α, 17β-diol activated pathways for stimulating human prostate cancer LNCaP cell proliferation. J Steroid Biochem Mol Biol 2004; 91: 157–170.

    Article  CAS  Google Scholar 

  19. De Bellis A et al. Epidermal growth factor, epidermal growth factor receptor, and transforming growth factor-alpha in human hyperplastic prostate tissue: expression and cellular localization. J Clin Endocrinol Metab 1996; 81: 4148–4154.

    CAS  PubMed  Google Scholar 

  20. De Miguel P et al. Immunohistochemical comparative analysis of transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates. Cytokine 1999; 11: 722–727.

    Article  CAS  Google Scholar 

  21. McKeehan WL, Adams PS, Rosser MP . Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 1984; 44: 1998–2010.

    CAS  PubMed  Google Scholar 

  22. MacDonald A, Habib FK . Divergent responses to epidermal growth factor in hormone sensitive and insensitive human prostate cancer cell lines. Br J Cancer 1992; 65: 177–182.

    Article  CAS  Google Scholar 

  23. Culig Z et al. Activation of the androgen receptor by polypeptide growth factors and cellular regulators. World J Urol 1995; 13: 285–289.

    Article  CAS  Google Scholar 

  24. Dozmorov I, Centola M . An associative analysis of gene expression array data. Bioinformatics 2003; 19: 204–211.

    Article  CAS  Google Scholar 

  25. Jarvis JN et al. Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther 2003; 6: R15–R32.

    Article  Google Scholar 

  26. Dozmorov I et al. Connective molecular pathways of experimental bladder inflammation. Physiol Genomics 2003; 15: 209–222.

    Article  CAS  Google Scholar 

  27. Dozmorov I et al. Neurokinin 1 receptors and neprilysin modulation of mouse bladder gene regulation. Physiol Genomics 2003; 12: 239–250.

    Article  CAS  Google Scholar 

  28. Toh H, Horimoto K . Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 2002; 18: 287–297.

    Article  CAS  Google Scholar 

  29. Härle P et al. Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol 2002; 76: 6558–6567.

    Article  Google Scholar 

  30. Knee DA et al. Structure–function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity. J Biol Chem 2001; 279: 12718–12724.

    Article  Google Scholar 

  31. Briknarova K et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 2001; 8: 349–352.

    Article  CAS  Google Scholar 

  32. Xiao N, DeFranco DB . Overexpression of unliganded steroid receptors activates endogenous heat shock factor. Mol Endocrinol 1997; 11: 1365–1374.

    Article  CAS  Google Scholar 

  33. Bailey CK et al. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 2002; 11: 515–523.

    Article  CAS  Google Scholar 

  34. LeClerc S et al. Molecular cloning and characterization of a factor that binds the human glucocorticoid receptor gene and represses its expression. J Biol Chem 1991; 266: 17333–17340.

    CAS  PubMed  Google Scholar 

  35. Campbell DH, Sutherland RL, Daly RJ . Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res 1999; 59: 5376–5385.

    CAS  PubMed  Google Scholar 

  36. Thomas CY et al. Spontaneous activation and signaling by overexpressed epidermal growth factor receptors in glioblastoma cells. Int J Cancer 2003; 104: 19–27.

    Article  CAS  Google Scholar 

  37. Sun M et al. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85α, androgen receptor, and Src. J Biol Chem 2003; 278: 42992–43000.

    Article  CAS  Google Scholar 

  38. Chen T, Wang LH, Farrar WL . Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 2000; 60: 2132–2135.

    CAS  PubMed  Google Scholar 

  39. Yang L et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 2003; 305: 462–469.

    Article  CAS  Google Scholar 

  40. Mahendroo MS, Cala KM, Russell DW . 5 α-reduced androgens play a key role in murine parturition. Mol Endocrinol 1996; 10: 380–392.

    CAS  PubMed  Google Scholar 

  41. Rizner TL et al. Human type 3 3α-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells. Endocrinology 2003; 144: 2922–2932.

    Article  CAS  Google Scholar 

  42. Lin H-K et al. Expression and characterization of recombinant type 2 3α-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3α/17β-HSD activity and cellular distribution. Mol Endocrinol 1997; 11: 1971–1984.

    CAS  PubMed  Google Scholar 

  43. Torn S et al. Production, purification, and functional analysis of recombinant human and mouse 17β-hydroxysteroid dehydrogenase type 7. Biochem Biophys Res Commun 2003; 305: 37–45.

    Article  CAS  Google Scholar 

  44. Connolly JM, Rose DP . Production of epidermal growth factor and transforming growth factor-α by the androgen-responsive LNCaP human prostate cancer cell line. Prostate 1990; 16: 209–218.

    Article  CAS  Google Scholar 

  45. Sehgal I et al. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells. Mol Biol Cell 1994; 5: 339–347.

    Article  CAS  Google Scholar 

  46. Schuurmans AL et al. Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer 1988; 42: 917–922.

    Article  CAS  Google Scholar 

  47. Sherwood ER et al. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 1998; 77: 855–861.

    Article  CAS  Google Scholar 

  48. Kondapaka BS, Reddy KB . Tyrosine kinase inhibitor as a novel signal transduction and antiproliferative agent: prostate cancer. Mol Cell Endocrinol 1996; 117: 53–58.

    Article  CAS  Google Scholar 

  49. Stoner E . The clinical development of a 5α-reductase inhibitor, finasteride. J Steroid Biochem Mol Biol 1990; 37: 375–378.

    Article  CAS  Google Scholar 

  50. Iversen P et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol 2000; 164: 1579–1582.

    Article  CAS  Google Scholar 

  51. See WA et al. Bicalutamide as immediate therapy either alone or as adjuvant to standard care of patients with localized or locally advanced prostate cancer: first analysis of the early prostate cancer program. J Urol 2002; 168: 429–435.

    Article  CAS  Google Scholar 

  52. de Vere White R et al. Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 1997; 31: 1–6.

    Article  CAS  Google Scholar 

  53. van der Kwast TH, Tetu B . Androgen receptors in untreated and treated prostatic intraepithelial neoplasia. Eur Urol 1996; 30: 265–268.

    Article  CAS  Google Scholar 

  54. El Sheikh SS et al. Androgen-independent prostate cancer: potential role of androgen and ErbB receptor signal transduction crosstalk. Neoplasia 2003; 5: 99–109.

    Article  CAS  Google Scholar 

  55. Orio F et al. Potential action of IGF-1 and EGF on androgen receptor nuclear transfer and transactivation in normal and cancer human prostate cell lines. Mol Cell Endocrinol 2002; 198: 105–114.

    Article  CAS  Google Scholar 

  56. Jones HE et al. Effect of an EGF-R selective tyrosine kinase inhibitor and an anti-androgen on LNCaP cells: identification of divergent growth regulatory pathways. Prostate 2001; 49: 38–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Grant DK54925 to HKL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-K Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, R., Dozmorov, I., Nunlist, E. et al. 5α-Androstane-3α,17β-diol activates pathway that resembles the epidermal growth factor responsive pathways in stimulating human prostate cancer LNCaP cell proliferation. Prostate Cancer Prostatic Dis 7, 364–374 (2004). https://doi.org/10.1038/sj.pcan.4500761

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500761

  • Springer Nature Limited

Keywords

This article is cited by

Navigation