Skip to main content

Advertisement

Log in

Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF-β production and lack of TGF-β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF-β-mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF-β/Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF-β, has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF-β/Smad3-mediated apoptosis, only HCV core represses TGF-β-induced G1 phase arrest through downregulation of the TGF-β-induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF-β. In conclusion, HCV viral proteins interact with the TGF-β signaling mediator Smad3 and differentially impair TGF-β/Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF-β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abe M, Harpel JG, Metz CN, Nunes L, Loskutoff DJ and Rigkin DB . (1994). Anal. Biochem., 216, 276–284.

  • Blight KJ, Kolykhalov AA and Rice CM . (2000). Science, 290, 1972–1974.

  • Chen CM, You LR, Hwang LH and Lee YHW . (1997). J. Virol., 71, 9417–9426.

  • Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR and Lee YHW . (2003). J. Biol. Chem., 278, 591–607.

  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF . (1995). Proc. Natl. Acad. Sci. USA, 92, 5545–5549.

  • De Bleser PJ, Niki T, Rogiers V and Geerts A . (1997). J. Hepatol., 26, 886–893.

  • De Francesco R and Steinkuhler C . (2000). Curr. Top. Microbiol. Immunol., 242, 149–169.

  • Dennler S, Itoh S, Vivien D, Dijke PT, Huet S and Gauthier JM . (1998). EMBO J., 17, 3091–3100.

  • Derynck R, Akhurst RJ and Balmain A . (2001). Nat. Genet., 29, 117–129.

  • Dey A, Atcha IA and Bagchi S . (1997). Virology, 228, 190–199.

  • Dubordeau M, Miyamura T, Matsuura Y, Alric L, Pipy B and Rousseau D . (2002). J. Hepatol., 37, 486–492.

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Fujita T, Ishido S, Muramatsu S, Itoh M and Hotta H . (1996). Biochem. Biophys. Res. Commun., 229, 825–831.

  • Graham FL and van der Eb AJ . (1973). Virology, 52, 456–467.

  • Hata A, Lo RS, Wotton D, Lagna G and Massague J . (1997). Nature, 388, 82–87.

  • Ito N, Kawata S, Tamura S, Takaishi K, Shirai Y, Kiso S, Yabuuchi I, Matsuda Y, Nishioka M and Tarui S . (1991). Cancer Res., 51, 4080–4083.

  • Jang CW, Chen CH, Chen CC, Chen JY, Su YH and Chen RH . (2002). Nat. Cell Biol., 4, 51–58.

  • Jayaraman L and Massague J . (2000). J. Biol. Chem., 275, 40710–40717.

  • Kim DH, Chang JH, Lee KH, Lee HY and Kim SJ . (1996). J. Biol. Chem., 272, 688–694.

  • Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM and Rice CM . (1997). Science, 277, 570–574.

  • Kwong AD, Kim JL and Lin C . (2000). Curr. Top. Microbiol. Immunol., 242, 171–196.

  • Lai MM and Ware CF . (2000). Curr. Top. Microbiol. Immunol., 242, 117–134.

  • Lauer GM and Walker BD . (2001). N. Engl. J. Med., 345, 41–52.

  • Lee DK, Kim BC, Brady JN, Jeang KT and Kim SJ . (2002a). J. Biol. Chem., 277, 33766–33775.

  • Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ and Kim SJ . (2002b). J. Biol. Chem., 277, 38557–38564.

  • Lee DK, Park SH, Yi Y, Choi SG, Lee C, Parks WT, Cho H, de Caestecker MP, Shaul Y, Roberts AB and Kim SJ . (2001). Genes Dev., 15, 455–466.

  • Lee MN, Jung EY, Kwun HJ, Jun HK, Yu DY, Choi YH and Jang KL . (2002c). J. Gen. Virol., 83, 2145–2151.

  • Massague J . (2000). Nat. Rev. Mol. Cell. Biol., 1, 169–178.

  • Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K, Yamashiki N, Seki T, Saito H, Nishizawa M, Fujisawa J and Inoue K . (2000). Cancer Res., 60, 1394–1402.

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T and Koike K . (1998). Nat. Med., 4, 1065–1067.

  • Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T and Koike K . (1997). J. Gen. Virol., 78, 1527–1531.

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K and ten Dijke P . (1997). EMBO J., 16, 5353–5362.

  • Nishihara A, Hanai JI, Imamura T, Miyazono K and Kawabata M . (1999). J. Biol. Chem., 274, 28716–28723.

  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W and Schulte-Hermann R . (1992). Proc. Natl. Acad. Sci. USA, 89, 5408–5412.

  • Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D and Moustakas A . (2000). J. Biol. Chem., 275, 29244–29256.

  • Prokova V, Mosialos G and Karassis D . (2001). J. Biol. Chem., 277, 9342–9350.

  • Ray RB, Steele R, Meyer K and Ray R . (1998). Gene, 208, 331–336.

  • Ray S, Broor SL, Vaishnav Y, Sarkar C, Girish R, Dar L, Seth P and Broor S . (2003). J. Gastroenterol. Hepatol., 18, 393–403.

  • Reed KE and Rice CM . (2000). Curr. Top. Microbiol. Immunol., 242, 55–84.

  • Sakamuro D, Furukawa T and Takegami T . (1995). J. Virol., 69, 3893–3896.

  • Seeff LB . (2002). Hepatology, 36, S35–S46.

  • Shih CM, Lo SJ, Miyamura T, Chen SY and Lee YHW . (1993). J. Virol., 67, 5823–5832.

  • Shih WL, Kuo ML, Chuang SE, Cheng AL and Doong SL . (2000). J. Biol. Chem., 275, 25858–25864.

  • Tellinghuisen TL and Rice CM . (2002). Curr. Opin. Microbiol., 5, 419–427.

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF and Massague J . (1992). Cell, 71, 1003–1014.

  • You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH and Lee YHW . (1999). J. Virol., 73, 2841–2853.

  • Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, Kunin M, Berdichevsky Y, Benhar I and Tur-Kaspa R . (2001). J. Viral Hepatitis., 8, 96–102.

  • Zhang Y, Feng XH and Derynck R . (1998). Nature, 394, 909–913.

  • Zhang Y, Feng XH, We RY and Derynck R . (1996). Nature, 383, 168–172.

Download references

Acknowledgements

We thank CM Rice and Apath (St Louis, MO, USA) for generously providing the Ava.5 cells and p90/HCVFLlongpU plasmid. We also thank L-H Hwang, R-H Chen, C-K Chou, K-H Lan, K Tokushige and K Miyazono for providing plasmids used in this study. We are grateful to R Kirby for critical reading and comments on this manuscript. This work was supported by the following grants to Y-HW Lee: NSC 89-2315-B-010-006-MH, NSC 89-2320-B-010-121, NSC 90-2320-B-010-077, NSC 91-2320-B-010-040, and NSC 92-2320-B-010-064 from National Science Council; and in part by grants NHRI-EX91-9002BL, NHRI-EX92-9002BL, and NHRI-EX93-9002BL from the National Health Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hwa Wu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, PL., Chang, MH., Chao, CH. et al. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation. Oncogene 23, 7821–7838 (2004). https://doi.org/10.1038/sj.onc.1208066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208066

  • Springer Nature Limited

Keywords

This article is cited by

Navigation