Skip to main content

Advertisement

Log in

Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Dual-specificity phosphatase 5 (DUSP5), a VH1-like enzyme that hydrolyses nuclear substrates phosphorylated on both tyrosine and serine/threonine residues, has a potential role in deactivation of mitogen- or stress-activated protein kinases. Using cDNA-microarray technology, we found that the expression of DUSP5 mRNA was dramatically increased by exogenous p53 in U373MG, a p53-mutant glioblastoma cell line. Transcription of DUSP5 was also remarkably activated by endogenous p53 in response to DNA damage in colon-cancer cells (p53+/+) that contained wild-type p53, but not in p53−/− cells. Chromatin-immunoprecipitation (ChIP) and reporter assays demonstrated that endogenous p53 protein would bind directly to the promoter region of the DUSP5 gene, implying p53-dependent transcriptional activity. Overexpression of DUSP5 suppressed the growth of several types of human cancer cells, in which Erk1/2 was significantly dephosphorylated. If, as the results suggest, DUSP5 is a direct target of p53, it represents a novel mechanism by which p53 might negatively regulate cell-cycle progression by downregulating mitogen- or stress-activated protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Brondello JM, Pouyssegur J and McKenzie FR . (1999). Science, 286, 2514–2517.

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW and Vogelstein B . (1992). Nat. Genet., 1, 45–49.

  • Furuhata T, Tokino T, Urano T and Nakamura Y . (1996). Oncogene, 13, 1965–1970.

  • Guan KL and Butch E . (1995). J. Biol. Chem., 270, 7197–7203.

  • Hollstein M, Sidransky D, Vogelstein B and Harris CC . (1991). Science, 253, 49–53.

  • Iiizumi M, Arakawa H, Mori T, Ando A and Nakamura Y . (2002). Cancer Res., 62, 1246–1250.

  • Ishibashi T, Bottaro DP, Michieli P, Kelley CA and Aaronson SA . (1994). J. Biol. Chem., 269, 29897–29902.

  • Kim TI, Jin SH, Kang EH, Shin SK, Choi KY and Kim WH . (2002). Ann. N. Y. Acad. Sci., 973, 241–245.

  • Ko LJ and Prives C . (1996). Genes Dev., 10, 1054–1072.

  • Kovanen PE, Rosenwald A, Fu J, Hurt EM, Lam LT, Giltnane JM, Wright G, Staudt LM and Leonard WJ . (2002). J. Biol. Chem., 278, 5205–5213.

  • Levine AJ . (1997). Cell, 88, 323–331.

  • Martell KJ, Kwak S, Hakes DJ, Dixon JE and Trent JM . (1994). Genomics, 22, 462–464.

  • Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M and King PD . (2001). J. Immunol., 166, 197–206.

  • McGrory WJ, Bautista DS and Graham FL . (1988). Virology, 163, 614–617.

  • Miyashita T and Reed JC . (1995). Cell, 80, 293–299.

  • Mori T, Anazawa Y, Matsui K, Fukuda S, Nakamura Y and Arakawa H . (2002a). Neoplasia, 4, 268–274.

  • Mori T, Anazawa Y, Iiizumi M, Fukuda S, Nakamura Y and Arakawa H . (2002b). Oncogene, 21, 2914–2918.

  • Ng CC, Koyama K, Okamura S, Kondoh H, Takei Y and Nakamura Y . (1999). Genes Chromosomes Cancer, 26, 329–335.

  • Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y and Tokino T . (1997). Oncogene, 15, 2145–2150.

  • Ochi K, Mori T, Toyama Y, Nakamura Y and Arakawa H . (2002). Neoplasia, 4, 82–87.

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y and Taya Y . (2000). Cell, 102, 849–862.

  • Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M and Nakamura Y . (2001). Mol. Cell, 8, 85–94.

  • Ono K, Tanaka T, Tsunoda T, Kitahara O, Kihara C, Okamoto A, Ochiai K, Takagi T and Nakamura Y . (2000). Cancer Res., 60, 5007–5011.

  • Oren M . (1994). Semin. Cancer Biol., 5, 221–227.

  • Shiraishi K, Fukuda S, Mori T, Matsuda K, Yamaguchi T, Tanikawa C, Ogawa M, Nakamura Y and Arakawa H . (2000). Cancer Res., 60, 3722–3726.

  • Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI and Moss T . (2001). Mol. Cell, 8, 1063–1073.

  • Takei Y, Ishikawa S, Tokino T, Muto T and Nakamura Y . (1998). Genes Chromosomes Cancer, 23, 1–9.

  • Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y and Nakamura Y . (2000). Nature, 404, 42–49.

  • Tokino T, Thiagalingam S, el-Deiry WS, Waldman T, Kinzler K W and Vogelstein B . (1994). Hum. Mol. Genet., 3, 1537–1542.

  • Urano T, Nishimori H, Han H, Furuhata T, Kimura Y, Nakamura Y and Tokino T . (1997). Cancer Res., 57, 3281–3287.

  • Yoo J, Park SY, Robinson RA, Kang SJ, Ahn WS and Kang CS . (2002). Arch. Pathol. Lab. Med., 126, 1096–1100.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, K., Arakawa, H. & Nakamura, Y. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene 22, 5586–5591 (2003). https://doi.org/10.1038/sj.onc.1206845

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206845

  • Springer Nature Limited

Keywords

This article is cited by

Navigation