Skip to main content
Log in

Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Embryonal carcinoma is a model of embryonic development as well as tumor cell differentiation. In response to all-trans retinoic acid (RA), the human embryonal carcinoma (EC) cell line, NT2/D1, differentiates toward a neuronal lineage with associated loss of cell growth and tumorigenicity. Through the use of cDNA-based microarrays we sought to identify the early downstream targets of RA during differentiation commitment of NT2/D1 cells. A total of 57 genes were induced and 37 genes repressed by RA. RA regulated genes were restricted at 8 h with 27 genes induced and five repressed. The total number of RA-responsive transcripts increased at 24 and 48 h and their pattern of expression was more symmetrical. For a given time point less than 1% of the 9128 cDNAs on the expression array were regulated by RA. Many of these gene products are associated with developmental pathways including those of TGF-β (Lefty A, NMA, follistatin), homeo domain (HoxD1, Meis2, Meis1, Gbx2), IGF (IGFBP3, IGFBP6, CTGF), Notch (manic fringe, ADAM11), Hedgehog (patched) and Wnt (Frat2, secreted frizzled-related protein 1) signaling. In addition a large cassette of genes induced by RA at 24–48 h are associated with cell adhesion, cytoskeletal and matrix remodeling, growth suppression and intracellular signaling cascades. The majority of repressed genes are associated with protein/RNA processing, turnover or metabolism. The early induced genes identified may play a regulatory role in RA-mediated growth suppression and terminal differentiation and may have physiologic or pharmacologic importance during normal human development and retinoid-based cancer therapy or prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allan GJ, Flint DJ, Patel K . 2001 Reproduction 122: 31–39

  • Altmann CR, Brivanlou AH . 2001 Int. Rev. Cytol. 203: 447–482

  • Andrews PW . 1984 Dev. Biol. 103: 285–293

  • Andrews PW . 1998 APMIS 106: 158–168

  • Asao H, Sasaki Y, Arita T, Tanaka N, Endo K, Kasai H, Takeshita T, Endo Y, Fujita T, Sugamura K . 1997 J. Biol. Chem. 272: 32785–32791

  • Bani-Yaghoub M, Felker JM, Ozog MA, Bechberger JF, Naus CC . 2001 Biochem. Cell Biol. 79: 387–398

  • Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P . 1990 Nature 348: 699–704

  • Bouillet P, Chazaud C, Oulad-Abdelghani M, Dolle P, Chambon P . 1995a Dev. Dyn. 204: 372–382

  • Bouillet P, Oulad-Abdelghani M, Vicaire S, Garnier JM, Schuhbaur B, Dollé P, Chambon P . 1995b Dev. Biol. 170: 420–433

  • Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N . 1995 Nature 377: 646–649

  • Calvo R, Drabkin HA . 2000 Ann. Oncol. 11: 207–218

  • Chaganti RS, Houldsworth J . 2000 Cancer Res. 60: 1475–1482

  • Chambon P . 1996 FASEB J. 10: 940–954

  • Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB . 2000 Proc. Natl. Acad. Sci. USA 97: 4291–4296

  • Cillo C, Cantile M, Faiella A, Boncinelli E . 2001 J. Cell. Physiol. 188: 161–169

  • Curtin JC, Dragnev KH, Sekula D, Christie AJ, Dmitrovsky E, Spinella MJ . 2001 Oncogene 20: 2559–2569

  • Dmitrovsky E, Murty VV, Moy D, Miller Jr WH, Nanus D, Albino AP, Samaniego F, Bosl G, Chaganti RS . 1990 Oncogene 5: 543–548

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P . 1992 Cell 71: 73–85

  • Edwards DP . 1999 Vitam. Horm. 55: 165–218

  • Eisen MM, Spellmann PT, Brown PO, Botstein D . 1998 Proc. Natl. Acad. Sci. USA 95: 14863–14868

  • Glass CK, Rosenfeld MG . 2000 Genes Dev. 14: 121–141

  • Gudas LJ, Sporn MB, Roberts AB . 1994 The Retinoids: Biology, Chemistry, and Medicine Sporn MB, Roberts AB and Goodman DS. (eds) New York: Raven Press, Ltd pp 443–520

    Google Scholar 

  • Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K . 1998 J. Biol. Chem. 273: 21790–21799

  • Heidenreich A, Srivastava S, Moul JW, Hofmann R . 2000 Eur. Urol. 37: 121–135

  • Heimdal K, Lothe RA, Lystad S, Holm R, Fossa SD, Borresen AL . 1993 Genes Chromosomes Cancer 6: 92–97

  • Iniguez MA, Morte B, Rodriguez-Pena A, Munoz A, Gerendasy D, Sutcliffe JG, Bernal J . 1994 Mol. Brain Res. 27: 205–214

  • Janciauskiene S . 2001 Biochim. Biophys. Acta 1535: 221–235

  • Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela A, Kaminski N, Getz G, Domany E, Givol D . 2001 Oncogene 20: 2225–2234

  • Kelly DL, Rizzino A . 2000 Mol. Reprod. Dev. 56: 113–123

  • Kerley JS, Olsen SL, Freemantle SJ, Spinella MJ . 2001 Biochem. Biophys. Res. Commun. 285: 969–975

  • Kiefer MC, Bauer DM, Barr PJ . 1989 Nucleic Acids Res. 17: 3306–

  • Kurie JM, Buck J, Eppinger TM, Moy D, Dmitrovsky E . 1993 Differentiation 54: 123–129

  • Lee CH, Wei LN . 1999 J. Biol. Chem. 274: 31320–31326

  • Leypoldt F, Lewerenz J, Methner A . 2001 J. Neurochem. 76: 806–814

  • Mangelsdorf D, Umesono K, Evans RM . 1994 The Retinoids: Biology, Chemistry, and Medicine Sporn MB, Roberts AB and Goodman DS. (eds) New York: Raven Press, Ltd pp 319–349

    Google Scholar 

  • Mark M, Ghyselinck NB, Wendling O, Dupe V, Mascrez B, Kastner P, Chambon P . 1999 Proc. Nutr. Soc. 58: 609–613

  • Matin A, Collin GB, Varnum DS, Nadeau JH . 1998 APMIS 106: 174–182

  • Michikawa M, Xu RY, Muramatsu H, Muramatsu T, Kim SU . 1993 Biochem. Biophys. Res. Commun. 192: 1312–1318

  • Morita K, Furuse M, Fujimoto K, Tsukita S . 1999 Proc. Natl. Acad. Sci. USA 96: 511–516

  • Mumm JS, Kopan R . 2000 Dev. Biol. 228: 151–165

  • Nason-Burchenal K, Dmitrovsky E . 1999 Retinoids: Handbook of Experimental Pharmacology Nau H and Blaner WS. (eds) Berlin: Springer-Verlag pp 301–322

    Book  Google Scholar 

  • Nichols J, Chambers I, Taga T, Smith A . 2001 Development 128: 2333–2339

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokini T, Taniguchi T, Tanaka N . 2000 Science 288: 1053–1058

  • Oulad-Abdelghani M, Chazaud C, Bouillet P, Sapin V, Chambon P, Dolle P . 1997 Dev. Dyn. 210: 173–183

  • Oulad-Abdelghani M, Chazaud C, Bouillet P, Mattei MG, Dolle P, Chambon P . 1998 Int. J. Dev. Biol. 42: 23–32

  • Peng HQ, Hogg D, Malkin D, Bailey D, Gallie BL, Bulbul M, Jewett M, Buchanan J, Gross PE . 1993 Cancer Res. 53: 3574–3578

  • Pera MF, Roach S, Elliss CJ . 1990 Cancer Surv. 9: 243–262

  • Pera MF, Reubinoff B, Trounson A . 2000 J. Cell Sci. 113: 5–10

  • Pohlmann R, Nagel G, Schmidt B, Stein M, Lorkowski G, Krentler C, Cully J, Meyer HE, Grzeschik KH, Mersmann G, Hasilik A, Vonfigura K . 1987 Proc. Natl. Acad. Sci. USA 84: 5575–5579

  • Przyborski SA, Morton IE, Wood A, Andrews PW . 2000 Eur. J. Neurosci. 12: 3521–3528

  • Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C, Puisieux A . 1996 Nat. Genet. 14: 482–486

  • Satoh J, Kuroda Y . 2000 J. Neurosci. Methods 94: 155–164

  • Schier AF, Shen MM . 2000 Nodal signaling in vertebrate development Nature 403: 385–389

    Article  CAS  Google Scholar 

  • Schottenfeld D, Warshauer ME, Sherlock S, Zauber AG, Leder M, Payne R . 1980 Am. J. Epidemiol. 112: 232–246

  • Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F . 1990 Nature 346: 763–766

  • Spinella MJ, Kitareewan S, Mellado B, Sekula D, Khoo KS, Dmitrovsky E . 1998 Oncogene 16: 3471–3480

  • Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E . 1999 J. Biol. Chem. 274: 22013–22018

  • Taipale J, Beachy PA . 2001 Nature 411: 349–354

  • Takada Y, Elices MJ, Crouse C, Hemler ME . 1989 EMBO J. 8: 1361–1368

  • Takeshita S, Kikuno R, Tezuka K, Amann E . 1993 Biochem. J. 294: 271–278

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM . 1998 Science 282: 1145–1147

  • Vos A, Oosterhuis JW, de Jong B, Buist J, Schraffordt Koops H . 1990 Cancer Genet. Cytogenet. 46: 75–81

  • White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M . 1997 J. Biol. Chem. 272: 18538–18541

  • Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K, Sekine S, Sakurada K, Miyawaki A, Furuichi T, Hasegawa M, Mikoshiba K . 1994 Receptor Channels 2: 9–22

  • Yuan S, Miller DW, Barnet GH, Hahn JF, Williams BR . 1995 Cancer Res. 55: 3456–3461

  • Zile MH . 2001 J. Nutr. 131: 705–708

Download references

Acknowledgements

We thank Dr Ethan Dmitrovsky (Dartmouth Medical School) for helpful discussion. This work was supported by the National Cancer Institute Howard Temin Award K01-CA75154 (MJ Spinella), by American Cancer Society Research Scholar Grant RSG-01-144-01 (MJ Spinella) and by a grant from the Lance Armstrong Foundation (SJ Freemantle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J Spinella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freemantle, S., Kerley, J., Olsen, S. et al. Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 21, 2880–2889 (2002). https://doi.org/10.1038/sj.onc.1205408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205408

  • Springer Nature Limited

Keywords

This article is cited by

Navigation