Skip to main content
Log in

Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Human ductal adenocarcinoma of the pancreas frequently carry activating point mutations in the K-ras protooncogene. We have analysed the activity of the Ras-Raf-MEK-MAPK cascade in the human pancreatic carcinoma cell line PANC-1 carrying an activating K-ras mutation. Serum-starved cells and cells grown in medium with serum did not show constitutively activated c-Raf, MEK-1, or p42 MAPK. Stimulation of cells with epidermal growth factor (EGF) or fetal calf serum (FCS) resulted in activation of N-Ras, but not K-Ras, as well as activation of c-Raf, MEK-1, and p42 MAPK. Preincubation of serum-starved cells with MEK-1 inhibitor PD98059 abolished EGF- and FCS-induced MAPK activation, identifying MEK as the upstream activator of MAPK. PANC-1 cells exhibited marked serum-dependence of anchorage-dependent and -independent cell growth as well as cell migration. EGF, alone or in combination with insulin and transferrin, did not induce cell proliferation of serum-starved PANC-1 cells, indicating that activation of MAPK alone was not sufficient to induce cell proliferation. FCS-induced DNA synthesis was inhibited by 40% by the MEK-1 inhibitor. On the other hand, treatment with either FCS or EGF alone resulted in marked, MEK-dependent increase of directed cell migration. Collectively, our results show that the activating K-ras mutation in PANC-1 cells does not result in constitutively increased Raf-MEK-MAPK signaling. Signal transduction via the Ras-Raf-MEK-MAPK cascade is maintained in these cells and is required for growth factor-induced cell proliferation and directed cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 6
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Anand-Apte B and Zetter B . 1997 Stem Cells 15: 259–267

  • Aoki K, Yoshida T, Matsumoto N, Ide H, Sugimura T and Terada M . 1997 Mol Carcinog 20: 251–258

  • Avruch J, Zhang X and Kyriakis JM . 1994 Trends Biochem Sci 19: 279–283

  • Beauchamp RD, Lyons RM, Yang EY, Coffey Jr RJ and Moses HL . 1990 Pancreas 5: 369–380

  • Boguski MS and McCormick F . 1993 Nature 366: 643–654

  • Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G and Rapp UR . 1985 Mol Cell Biol 5: 1400–1407

  • Bos JL . 1989 Cancer Res 49: 4682–4689

  • Brat DJ, Hahn SA, Griffin CA, Yeo CJ, Kern SE and Hruban RH . 1997 Am J Pathol 150: 383–391

  • Buard A, Zipfel PA, Frey RS and Mulder KM . 1996 Int J Cancer 67: 539–546

  • Buday L and Downward J . 1993 Cell 73: 611–620

  • Caldas C and Kern SE . 1995 Int J Pancreatol 18: 1–6

  • Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD and Goeddel DV . 1983 Nature 304: 507–513

  • Chang EH, Furth ME, Scolnick EM and Lowy DR . 1982 Nature 297: 479–483

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW, Cordon-Cardo C, Yancopoulos GD and DePinho RA . 1999 Nature 400: 468–472

  • Cox AD and Der CJ . 1997 Biochim Biophys Acta 1333: F51–71

  • Cox AD, Solski PA, Jordan JD and Der CJ . 1995 Methods Enzymol 255: 195–220

  • de Rooij J and Bos JL . 1997 Oncogene 14: 623–625

  • Downward J . 1998 Curr Opin Genet Dev 8: 49–54

  • Dudley DT, Pang L, Decker SJ, Bridges AJ and Saltiel AR . 1995 Proc Natl Acad Sci USA 92: 7686–7689

  • Fan J and Bertino JR . 1997 Oncogene 14: 2595–2607

  • Freeman JW, Hattingly CA and Strodel WE . 1995 J Cell Physiol 165: 155–163

  • Friess H, Berberat P, Schilling M, Kunz J, Korc M and Buchler MW . 1996 J Mol Med 74: 35–42

  • Gardner AM, Lange-Carter CA, Vaillancourt RR and Johnson GL . 1994 Methods Enzymol 238: 258–270

  • Gillespie J, Dye JF, Schachter M and Guillou PJ . 1993 Br J Cancer 68: 1122–1126

  • Grewe M, Gansauge F, Schmid RM, Adler G and Seufferlein T . 1999 Cancer Res 59: 3581–3587

  • Hamilton M and Wolfman A . 1998 Oncogene 16: 1417–1428

  • Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y and Nishida E . 1992 J Biol Chem 267: 20346–20351

  • Herrmann C, Martin GA and Wittinghofer A . 1995 J Biol Chem 270: 2901–2905

  • Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL and Bos JL . 1993 Am J Pathol 143: 545–554

  • Huang W, Alessandrini A, Crews CM and Erikson RL . 1993 Proc Natl Acad Sci USA 90: 10947–10951

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R and Jacks T . 1997 Genes Dev 11: 2468–2481

  • Khosravi-Far R, Campbell S, Rossman KL and Der CJ . 1998 Adv Cancer Res 72: 57–107

  • Kita K, Saito S, Morioka CY and Watanabe A . 1999 Int J Cancer 80: 553–558

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A and Katsuki M . 1997 Oncogene 15: 1151–1159

  • Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M and Beger HG . 1992 J Clin Invest 90: 1352–1360

  • Laird AD and Shalloway D . 1997 Cell Signal 9: 249–255

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M and Todaro G . 1975 Int J Cancer 15: 741–747

  • Longnecker DS and Terhune PG . 1998 Pancreas 17: 323–324

  • Lowy DR and Willumsen BM . 1993 Annu Rev Biochem 62: 851–891

  • Maher J, Baker DA, Manning M, Dibb NJ and Roberts IAG . 1995 Oncogene 11: 1639–1647

  • Marshall CJ . 1996 Curr Opin Cell Biol 8: 197–204

  • McGrath JP, Capon DJ, Smith DH, Chen EY, Seeburg PH, Goeddel DV and Levinson AD . 1983 Nature 304: 501–506

  • Moepps B, Vatter P, Frodl R, Waechter F, Dixkens C, Hameister H and Gierschik P . 1999 Genomics 60: 199–209

  • Okada S, Yoshimori M and Kakizoe T . 1998 Pancreas 16: 349–354

  • Payne MD, Rossomando AJ, Martino P, Erickson AK, Her J-H, Shabanowitz J, Hunt DF, Weber MJ and Sturgill TW . 1991 EMBO J 10: 885–892

  • Rodriguez Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A and Downward J . 1997 Cell 89: 457–467

  • Rozengurt E . 1986 Science 234: 161–166

  • Satoh T, Endo M, Nakafuku M, Akiyama T, Yamamoto T and Kaziro Y . 1990 Proc Natl Acad Sci USA 87: 7926–7929

  • Schagger H and von Jagow G . 1987 Anal Biochem 166: 368–379

  • Seger R and Krebs EG . 1995 FASEB J 9: 726–735

  • Seth A, Gonzalez FA, Gupta S, Raden DL and Davis RJ . 1992 J Biol Chem 267: 24796–24804

  • Seufferlein T, Van LJ, Liptay S, Adler G and Schmid RM . 1999 Gastroenterology 116: 1441–1452

  • Shimizu K, Birnbaum D, Ruley MA, Fasano O, Suard Y, Edlund L, Taparowsky E, Goldfarb M and Wigler M . 1983 Nature 304: 497–500

  • Smith JJ, Derynck R and Korc M . 1987 Proc Natl Acad Sci USA 84: 7567–7570

  • Sturgill TW, Ray BL, Erikson E and Maller JL . 1988 Nature 334: 715–718

  • Sumi S, Beauchamp RD, Townsend Jr CM, Pour PM, Ishizuka J and Thompson JC . 1994 Pancreas 9: 657–661

  • Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, Pickren JW, Berjian R, Douglass HOJ and Chu TM . 1986 Cancer Invest 4: 15–23

  • Treisman R . 1996 Curr Opin Cell Biol 8: 205–215

  • Verbeek BS, Adriaansen-Slot SS, Vroom TM, Beckers T and Rijksen G . 1998 FEBS Lett 425: 145–150

  • Watanabe M, Nobuta A, Tanaka J and Asaka M . 1996 Int J Cancer 67: 264–268

  • Wells A, Gupta K, Chang P, Swindle S, Glading A and Shiraha H . 1998 Microsc Res Tech 43: 395–411

  • Yan J, Roy S, Apolloni A, Lane A and Hancock JF . 1998 J Biol Chem 273: 24052–24056

  • Yip-Schneider MT, Lin A, Barnard D, Sweeney CJ and Marshall MS . 1999 Int J Oncol 15: 271–279

Download references

Acknowledgements

We thank UR Rapp for providing the c-Raf antiserum, W Kölch for cooperation in establishing the Raf-assay and T Seufferlein for introduction into the MAPK-assay. We wish to thank Y Kloog for providing the N-Ras cDNA, C Block for pcDNA/H-Ras (S17N) and JS Gutkind for pcDNA3/HA-MAPK expression plasmid, respectively. Furthermore, we greatly appreciate the help of B Moepps, S Gierschik and U Bachfischer. This work was supported by a grant of the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (project 01-KS-9605/2).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giehl, K., Skripczynski, B., Mansard, A. et al. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 19, 2930–2942 (2000). https://doi.org/10.1038/sj.onc.1203612

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203612

  • Springer Nature Limited

Keywords

This article is cited by

Navigation