Skip to main content

Advertisement

Log in

Regulation of mRNA splicing and transport by the tyrosine kinase activity of src

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

The regulation of transcription by signal transduction pathways is well documented. In addition, we have previously shown that src can regulate pre-mRNA processing. To investigate which functional domains of src are involved in the regulation of splicing and transport of Lymphotoxin α (LTα) transcripts, we have used src mutants in the catalytic, SH2 and SH3 domains in association with the Y527F or the E378G activating mutation. Our results establish that the regulation of pre-mRNA processing and transcription can occur independently of each other. The splicing and transport phenotypes require an intact tyrosine kinase domain and both are insensitive to the deletion of the SH3 domain. Therefore these phenotypes do not depend upon the recruitment through the SH3 domain of src of RNA binding proteins (Sam 68, hnRNP K). By contrast, deletions in the SH2 domain have no effect on splicing but either abolish or exacerbate the transport phenotype depending upon the activating mutation (Y527F or E378G). These divergent responses are associated with specific changes in the pattern of tyrosine phosphorylated proteins. Thus, the regulation of transcription, splicing and mRNA transport implicate different effector pathways of src. Furthermore, analysis of the transport phenotype reveals the interplay between the SH2 and catalytic domain of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Beug H, Claviez M, Jockusch BM and Graf T. . 1978 Cell 14: 843–856.

    Article  CAS  Google Scholar 

  • Blobel GA and Hanafusa H. . 1991 Proc. Natl. Acad. Sci. USA 88: 1162–1166.

  • Brown MT and Cooper JA. . 1996 Biochim. Biophys. Acta 1287: 121–149.

  • Cabannes E, Vives MF and Bedard PA . 1997 Oncogene 15: 29–43

    Article  CAS  Google Scholar 

  • Fumagalli S, Totty NF, Hsuan JJ and Courtneidge SA. . 1994 Nature 368: 871–874.

    Article  CAS  Google Scholar 

  • Goodison S and Tarin D. . 1998 Front. Biosci. 3: 89–109.

  • Hirai H and Varmus HE. . 1990 Genes Dev., 4: 2342–2352.

  • Kanner SB, Reynolds AB, Wang HC, Vines RR and Parsons JT. . 1991 Embo J. 10: 1689–1698.

  • Kmiecik TE and Shalloway D. . 1987 Cell, 49: 65–73.

    Article  CAS  Google Scholar 

  • Levy JB, Iba H and Hanafusa H. . 1986 Proc. Natl. Acad. Sci. USA 83: 4228–4232.

  • Mayer BJ, Hirai H and Sakai R. . 1995 Curr Biol. 5: 296–305.

  • Murakami M, Sonobe MH., Ui M, Kabuyama Y, Watanabe H, Wada T, Handa H and Iba H. . 1997 Oncogene 14: 2435–2444.

    Article  CAS  Google Scholar 

  • Neel H, Gondran P, Weil D and Dautry F. . 1995 Curr. Biol. 5: 413–422.

  • Neel H, Weil D, Giansante C and Dautry F. . 1993 Genes Dev. 7: 2194–2205.

  • Pellicena P, Stowell KR and Miller WT. . 1998 J. Biol. Chem. 273: 15325–15328.

    Article  CAS  Google Scholar 

  • Pinol-Roma S and Dreyfuss G. . 1992 Nature 355: 730–732.

    Article  Google Scholar 

  • Pype S, Slegers H, Moens L, Merlevede W and Goris J. . 1994 J. Biol. Chem. 269: 31457–31465.

  • Seidel-Dugan C, Meyer BE, Thomas SM and Brugge JS. . 1992 Mol. Cell. Biol. 12: 1835–1845.

    Article  CAS  Google Scholar 

  • Soriano P, Montgomery C, Geske R and Bradley A. . 1991 Cell 64: 693–702.

    Article  CAS  Google Scholar 

  • Superti-Furga G and Gonfloni S. . 1997 Bioessays 19: 447–450.

    Article  CAS  Google Scholar 

  • Taylor SJ and Shalloway D. . 1994 Nature 368: 867–871.

    Article  CAS  Google Scholar 

  • Taylor SJ and Shalloway D. . 1996 Bioessays 18: 9–11.

    Article  CAS  Google Scholar 

  • Thomas SM and Brugge JS. . 1997 Annu. Rev. Cell. Dev. Biol. 13: 513–609.

    Article  CAS  Google Scholar 

  • Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP and Jove R. . 1998 Mol. Cell. Biol. 18: 2545–2552.

    Article  CAS  Google Scholar 

  • Twamley-Stein GM, Pepperkok R, Ansorge W and Courtneidge SA. . 1993 Proc. Natl. Acad. Sci. USA 90: 7696–7700.

  • Weil D, Brosset S and Dautry F. . 1990 Mol. Cell. Biol. 10: 5865–5875.

    Article  CAS  Google Scholar 

  • Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, Michael WM, Dreyfuss G and Brugge JS. . 1994 Mol. Cell. Biol. 14: 4509–4521.

    Article  CAS  Google Scholar 

  • Xu W, Harrison SC and Eck M J. . 1997 Nature 385: 595–602.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Neel for his contributions to the initial phase of this study, D Weil for comments and J Brugge for providing src mutants. This work was supported by the Ligue Departementale contre le Cancer du Val de Marne.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondran, P., Dautry, F. Regulation of mRNA splicing and transport by the tyrosine kinase activity of src. Oncogene 18, 2547–2555 (1999). https://doi.org/10.1038/sj.onc.1202598

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202598

  • Springer Nature Limited

Keywords

This article is cited by

Navigation