Skip to main content

Advertisement

Log in

Screening ABCG1, the human homologue of the Drosophila white gene, for polymorphisms and association with bipolar affective disorder

  • Original Research Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

ABCG1 encodes a transporter protein that may be involved in the cellular uptake of tryptophan. Tryptophan is the precursor for serotonin, which is implicated in the regulation of mood. The gene maps to chromosome 21q22.3, a region implicated in bipolar disorder I (BPI) in genetic linkage studies. ABCG1 is thus a suitable candidate gene for study in BP1. We screened all 15 exons and 700 bases of the 5′ flanking region of ABCG1 for mutations, using Denaturing High Performance Liquid Chromatography (DHPLC). A total of 13 single nucleotide polymorphisms (SNPs) were identified. Ten of the SNPs were intronic, two lie within the 5′ flanking region and one within the 3′ UTR. We identified a GCC repeat within Exon 1 and two novel intronic VNTRs. Eight of the SNPs, the two VNTRs, the GCC repeat and two known microsatellite markers within the gene were tested for association with BP1 in a sample of 110 parent-offspring trios using the Extended Transmission Disequilibrium Test (ETDT). No alleles or haplotypes were significantly preferentially transmitted from parents to affected offspring. However, the trend for preferential transmission of markers in the 3′UTR is in the same direction as in a previous report for association with mood and panic disorders and therefore warrants attempts at replication. Marker-to-marker linkage disequilibrium (LD) showed that strong LD was present over relatively short distances of up to 20 kb and was present for SNPs as well as for polymorphic repeats. The polymorphisms identified in this study will be useful in examining the role of this gene in other neuropsychiatric disorders and behavioural traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ewart GD, Cannell D, Cox GB, Howells AJ . Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors in Drosophila melanogaster. Implications for structure-function relationships J Biol Chem 1994 269: 10370–10377

    CAS  PubMed  Google Scholar 

  2. Sullivan DT, Bell LA, Paton DR, Sullivan MC . Genetic and functional analysis of tryptophan transport in Malpighian tubules of Drosophila Biochem Genet 1980 18: 1109–1130

    Article  CAS  PubMed  Google Scholar 

  3. Schaechter JD, Wurtman RJ . Serotonin release varies with brain tryptophan levels Brain Res 1990 532: 203–210

    Article  CAS  PubMed  Google Scholar 

  4. Joseph MH, Kennett GA . Stress-induced release of 5-HT in the hippocampus and its dependence on increased tryptophan availability: an in vivo electrochemical study Brain Res 1983 270: 251–257

    Article  CAS  PubMed  Google Scholar 

  5. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport Proc Natl Acad Sci U S A 2000 97: 817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goodwin FK, Jamison KR . Manic-Depressive Illness Oxford University Press: New York 1990 pp 421–422

  7. Nakamura M, Ueno A, Tanabe H . Polymorphisms of the human homologue of the Drosophila white gene are associated with mood and panic disorders Mol Psychiatry 1999 4: 155–162

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Rossier C, Lalioti MD, Lynn A, Chakravarti A, Perrin G, Antonarakis SE . Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3 Am J Hum Genet 1996 59: 66–75

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS et al. The DNA sequence of human chromosome 21. The chromosome 21 mapping and sequencing consortium Nature 2000 405: 311–319

    Article  CAS  PubMed  Google Scholar 

  10. Langmann T, Porsch-Ozcurumez M, Unkelbach U, Klucken J, Schmitz G . Genomic organization and characterization of the promoter of the human ATP-binding cassette transporter-G1 (ABCG1) gene(1) Biochim Biophys Acta 2000 1494: 175–180

    Article  CAS  PubMed  Google Scholar 

  11. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3 Nat Genet 1994 8: 291–296

    Article  CAS  PubMed  Google Scholar 

  12. Detera-Wadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY et al. Affected-sib-pair analyses reveal support of prior evidence for a susceptibility locus for bipolar disorder, on 21q Am J Hum Genet 1996 58: 1279–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smyth C, Kalsi G, Curtis D, Brynjolfsson J, O'Neill J, Rifkin L et al. Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22 Genomics 1997 39: 271–278

    Article  CAS  PubMed  Google Scholar 

  14. Aita VM, Liu J, Knowles JA, Terwilliger JD, Baltazar R, Grunn A et al. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence for a putative bipolar affective disorder locus Am J Hum Genet 1999 64: 210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirov G, Jones I, McCandless F, Craddock N, Owen MJ . Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5 Mol Psychiatry 1999 4: 558–565

    Article  CAS  PubMed  Google Scholar 

  16. Kirov G, Rees M, Jones I, MacCandless F, Owen MJ, Craddock N . Bipolar disorder and the serotonin transporter gene: a family-based association study Psychol Med 1999 29: 1249–1254

    Article  CAS  PubMed  Google Scholar 

  17. Oefner PJ, Underhill PA . DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). In: Dracopoli NC, Haines JL, Korf BR, Moir DT, Morton CC, Seidman CE (eds) Current Protocols in Human Genetics, Suppl 19 Wiley & Son, New York 1998 pp 7.10.1–7.10.12

    Google Scholar 

  18. Jones AC, Austin J, Hansen N, Hoogendoorn B, Oefner PJ, Cheadle JP et al. Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis Clin Chem 1999 45: 1133–1140

    CAS  PubMed  Google Scholar 

  19. Benson G . Tandem repeats finder: a program to analyze DNA sequences Nucl Acids Res 1999 27: 573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rozen S, Skaletsky HJ . Primer 3 1998 http://www.genome.wi.mit.edu/genome_software/other/primer3.html

  21. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) Am J Hum Genet 1993 52: 506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sham P, Curtis D . An extended transmission disequilibrium test (TDT) for multiallele market loci Ann Hum Genet 1995 59: 323–336

    Article  CAS  PubMed  Google Scholar 

  23. Sobel E, Lange K . Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics Am J Hum Genet 1996 58: 1323–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewontin RC . The interaction of selection and linkage. I. General considerations; heterotic models Genetics 1964 49: 49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirov G, Williams N, Sham P, Craddock N, Owen MJ . Pooled genotyping of microsatellite markers in parent-offspring trios Genome Res 2000 10: 105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Camp NJ . Genomewide transmission/disequilibrium testing—consideration of the genotypic relative risks at disease loci Am J Hum Genet 1997 61: 1424–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camp NJ . Genomewide transmission/disequilibrium testing: a correction Am J Hum Genet 1999 64: 1485–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirov G, Owen MJ, Jones I, McCandless F, Craddock N . Tryptophan hydroxylase gene and manic-depressive illness Arch Gen Psychiatry 1999 56: 98–99

    Article  CAS  PubMed  Google Scholar 

  29. Rujescu D, Giegling I, Szegedi A, Anghelescu I, Schäfer M, Bondy B et al. Suicidal behaviour, affective disorders and a polymorphism in the ABCG1 gene (abstract) Am J Med Genet 2000 96: 559

    Google Scholar 

  30. Corbex M, Rousseau F, Oget L, Chansac C, Meloni R, Del Zompo M et al. How neutral polymorphisms reflect functional ones. Effects of allele frequency disparities in candidate gene association studies (abstract) Am J Med Genet 2000 96: 486

    Google Scholar 

  31. Kruglyak, L . Prospects for whole-genome linkage disequilibrium mapping of common disease genes Nat Genet 1999 22: 139–144

    Article  CAS  PubMed  Google Scholar 

  32. Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer Disease Am J Hum Genet 2000 67: 383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ober C, Leavitt SA, Tsalenko A, Howard TD, Hoki DM, Daniel R et al. Variation in the Interleukin 4-receptor α gene confers susceptibility to asthma and atopy in ethnically diverse populations Am J Hum Genet 2000 66: 517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moffatt MF, Traherne JA, Abecasis GR, Cookson WOCM . Single nucleotide polymorphism and linkage disequilibrium within the TCR α/β locus Hum Mol Genet 2000 9: 1011–1019

    Article  CAS  PubMed  Google Scholar 

  35. Nair RP, Stuart P, Henseler T, Jenish S, Chia VC, Westphal E et al. Localisation of psoriasis-susceptibility locus PSOR1 to a 60-kb interval telomeric to HLA-C Am J Hum Genet 2000 66: 1833–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorde LB . Linkage disequilibrium and the search for complex disease genes Genome Res 2000 10: 1435–1444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust and the MRC. GK is a Wellcome Trust Advanced Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirov, G., Lowry, C., Stephens, M. et al. Screening ABCG1, the human homologue of the Drosophila white gene, for polymorphisms and association with bipolar affective disorder. Mol Psychiatry 6, 671–677 (2001). https://doi.org/10.1038/sj.mp.4000899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000899

  • Springer Nature Limited

Keywords

This article is cited by

Navigation