Skip to main content

Advertisement

Log in

Transcriptional Control and Deregulation

A novel transcript of the LMO2 gene, LMO2-c, is regulated by GATA-1 and PU.1 and encodes an antagonist of LMO2

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

Ectopic expression of LIM-only protein 2 (LMO2) in T-cells, as a result of chromosomal translocations or retroviral insertion, plays an important role in the onset of T-cell leukemias. Two transcripts of LMO2 gene (LMO2-a and LMO2-b) have been reported to encode a same 158-amino-acid protein. We have previously reported a novel transcript of human LMO2 gene (LMO2-c) encoding a 151-amino-acid protein, and defined its promoter region. In the present study, we investigated the regulation of the LMO2-c expression and the functions of LMO2-c. We found that LMO2-c expression is regulated by the cooperation of two essential hematopoietic transcription factors GATA-1 and PU.1 in various hematopoietic cell lines, suggesting an important functional role for LMO2-c in the hematopoietic system. More importantly, we demonstrated that LMO2-c acts as an antagonist of LMO2-a/b binding to its partners, therefore blocking the transactivation of LMO2-a/b on its target genes. These findings provide novel evidence to the functions of LMO2 gene in the hematopoietic system and leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Royer-Pokora B, Loos U, Ludwig W-D . TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11:14)(p13:q11). Oncogene 1991; 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  2. Royer-Pokora B, Rogers M, Zhu TH, Schneider S, Loos U, Bolitz U . The TTG-2/RBTN2 T cell oncogene encodes two alternative transcripts from two promoters: the distal promoter is removed by most 11p13 translocations in acute T cell leukaemia's (T-ALL). Oncogene 1995; 10: 1353–1360.

    CAS  PubMed  Google Scholar 

  3. Nam CH, Rabbitts TH . The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 2006; 13: 15–25.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  5. Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH . The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 1994; 78: 45–57.

    Article  CAS  PubMed  Google Scholar 

  6. Visvader JE, Mao X, Fujiwara Y, Hahm K, Orkin SH . The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proc Natl Acad Sci USA 1997; 94: 13707–13712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH . The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci USA 1998; 95: 3890–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCormack MP, Forster A, Drynan L, Pannell R, Rabbitts TH . The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol Cell Biol 2003; 23: 9003–9013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bach I . The LIM domain: regulation by association. Mech Dev 2000; 91: 5–17.

    Article  CAS  PubMed  Google Scholar 

  10. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NL1 proteins. EMBO 1997; 16: 3145–3157.

    Article  CAS  Google Scholar 

  11. Ono Y, Fukuhara N, Yoshie O . TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol 1998; 18: 6939–6950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson KP, Crable SC, Lingrel JB . Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem 1998; 273: 14347–14354.

    Article  CAS  PubMed  Google Scholar 

  13. Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C et al. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 2002; 100: 2430–2440.

    Article  CAS  PubMed  Google Scholar 

  14. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ . Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anguita E, Hughes J, Heyworth C, Blobel GA, Wood WG, Higgs DR . Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J 2004; 23: 2841–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lahlil R, Lecuyer E, Herblot S, Hoang T . SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu TH, Qin G, Royer-Pokora B . A novel post-transcriptional splicing form of the acute T cell leukemia proto-oncogene Lmo2. Sci China (Ser C-Life Sci) 2001; 44: 561–569.

    Article  CAS  Google Scholar 

  18. Pruess MM, Drechsler M, Royer-Pokora B . Promoter 1 of LMO2, a master gene for hematopoiesis, is regulated by the erythroid specific transcription factor GATA1. Gene Funct Dis 2000; 2: 87–94.

    Article  Google Scholar 

  19. Landry JR, Kinston S, Knezevic K, Donaldson IJ, Green AR, Gottgens B . Fli1, Elf1, and Ets1 regulate the proximal promoter of the LMO2 gene in endothelial cells. Blood 2005; 106: 2680–2687.

    Article  CAS  PubMed  Google Scholar 

  20. Nerlov C, Querfurth E, Kulessa H, Graf T . GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000; 95: 2543–2551.

    CAS  PubMed  Google Scholar 

  21. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Rodomska HS et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999; 96: 8705–8710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000; 96: 2641–2648.

    CAS  PubMed  Google Scholar 

  23. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI . PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 2005; 24: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benchabane H, Wrana JL . GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 2003; 23: 6646–6661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo B, Heard AD, Lodish HF . Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci USA 2004; 101: 5494–5499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Terano T, Zhong Y, Toyokuni S, Hiai H, Yamada Y . Transcriptional control of fetal liver hematopoiesis: dominant negative effect of the overexpression of the LIM domain mutants of LMO2. Exp Hematol 2005; 33: 641–651.

    Article  CAS  PubMed  Google Scholar 

  27. Mead PE, Deconinck AE, Huber TL, Orkin SH, Zon LI . Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 2001; 128: 2301–2308.

    CAS  PubMed  Google Scholar 

  28. Gering M, Yamada Y, Rabbitts TH, Patient RK . Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 2003; 130: 6187–6199.

    Article  CAS  PubMed  Google Scholar 

  29. Graf T . Differentiation plasticity of hematopoietic cells. Blood 2002; 99: 3089–3101.

    Article  CAS  PubMed  Google Scholar 

  30. Rekhtman N, Choe KS, Matushansky I, Murray S, Stopka T, Skoultchi AI . PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 2003; 23: 7460–7474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrison CJ, Foroni L . Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002; 62: 91–113.

    Article  Google Scholar 

  32. Hatano M, Roberts CWM, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T-cell leukemia. Science 1991; 253: 70–72.

    Article  Google Scholar 

  33. Chen Q, Cheng JT, Tsai LH, Schneider N, Buchanan G, Carroll A et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix–loop–helix protein. EMBO J 1990; 9: 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia Y, Brown L, Yang CY-C, Tsai JT, Siciliano MJ, Espirosa R et al. TAL2, a helix–loop–helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991; 88: 11416–11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SO, Korsmeyer SJ . The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 1989; 9: 2124–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mellentin JD, Smith SD, Cleary ML . lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix–loop–helix DNA binding motif. Cell 1989; 58: 77–83.

    Article  CAS  PubMed  Google Scholar 

  37. Hacein-Bey-Abina A, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt M, Hacein-Bey-Abina S, Wissler M, Carlier F, Lim A, Prinz C et al. Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood 2005; 105: 2699–2706.

    Article  CAS  PubMed  Google Scholar 

  39. Choe KS, Radparvar F, Matushansky I, Rekhtman N, Han X, Skoultchi AI . Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer Res 2003; 63: 6363–6369.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from The Natural Sciences Foundation of Tianjin City (No. 05YFJMJC01800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Zhu.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Zhang, M., Wang, X. et al. A novel transcript of the LMO2 gene, LMO2-c, is regulated by GATA-1 and PU.1 and encodes an antagonist of LMO2. Leukemia 21, 1015–1025 (2007). https://doi.org/10.1038/sj.leu.2404644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404644

  • Springer Nature Limited

Keywords

This article is cited by

Navigation