Skip to main content

Advertisement

Log in

Debate Round Table on Chimerism

Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK cell chimaerism for late graft rejection

  • Debate Round Table
  • Published:
Leukemia Submit manuscript

Abstract

Chimaerism of FACS-sorted leucocyte subsets (CD14+, CD15+, CD3−/56+, CD3+/4+, CD3+/8+, CD19+) was monitored prospectively between days +14 and +100 in 39 children undergoing allogeneic stem cell transplantation with reduced intensity-conditioning regimens. Cell subsets exceeding 1% of nucleated cells were subject to cell sorting. Chimaerism was analysed by dual-colour FISH and/or by short tandem repeat-polymerase chain reaction. The chimaerism pattern on day +28 was evaluated with regard to its correlation with graft rejection. Of 39 patients, nine patients had donor chimaerism (DC) in all subsets. Mixed/recipient chimaerism (MC/RC) was detectable within T cells in 62%, within NK cells in 39% and within monocytes and granulocytes in 38% of the patients. The correlation of secondary graft rejection with the chimaerism pattern on day +28 revealed the strongest association between RC in NK-cells (P<0.0001), followed by T cells (P=0.001), and granulocytes and monocytes (P=0.034). Notably, patients with RC in T cells rejected their graft only if MC or RC was also present in the NK-cell subset. By contrast, none of the children with DC in NK cells experienced a graft rejection. These observations suggest that, in the presence of recipient T-cell chimaerism, the chimaerism status in NK-cells on day +28 might be able to identify patients at high risk for late graft rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gluckman E, Bussel A, Benbunan M, Broquet M, Schaison G, Dausset J et al. Treatment of bone marrow aplasia by allogenic bone marrow grafts. Nouv Presse Med 1975; 19: 1177–1182.

    Google Scholar 

  2. Hansen G, Dupont B, Faber V, Jakobson B, Juhl F, Nielsen L et al. Lymphocyte chimerism after bone marrow transplantation. Surface markers and in vitro function of donor and recipient lymphocyte subpopulations. Scand J Immunol 1977; 6: 299–303.

    Article  CAS  Google Scholar 

  3. Starling K, Faletta J, Fernbach D . Immunologic chimerism as evidence of bone marrow graft acceptance in an identical twin with acute lymphocytic leukemia. Exp Hematol 1975; 3: 244–248.

    CAS  PubMed  Google Scholar 

  4. Hancock JP, Goulden NJ, Oakhill A, Steward CG . Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 2003; 17: 247–251.

    Article  CAS  Google Scholar 

  5. Lapointe C, Forest L, Lussier P, Busque L, Lagace F, Perrault C et al. Sequential analysis of early hematopoietic reconstitution following allogeneic bone marrow transplantation with fluorescence in situ hybridization (FISH). Bone Marrow Transplant 1996; 17: 1143–1148.

    CAS  PubMed  Google Scholar 

  6. Lion T . Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 2003; 17: 252–254.

    Article  CAS  Google Scholar 

  7. Scharf S, Smith A, Hansen J, McFarland C, Erlich H . Quantitative determination of bone marrow transplant engraftment using fluorescent polymerase chain reaction primers for human identity markers. Blood 1995; 85: 1954–1963.

    CAS  PubMed  Google Scholar 

  8. Bader P, Beck J, Frey A, Schlegel P, Hebarth H, Handgretinger R et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 1998; 21: 487–495.

    Article  CAS  Google Scholar 

  9. Casado L, Steegmann J, Pico M, Requena M, Ramirez M, Madero L et al. Study of chimerism in long-term survivors after bone marrow transplantation for severe acquired aplastic anemia. Bone Marrow Transplant 1996; 18: 405–409.

    CAS  PubMed  Google Scholar 

  10. Frankel W, Chan A, Corringham R, Shepherd S, Rearden A, Wang-Rodriguez J . Detection of chimerism and early engraftment after allogeneic peripheral stem cell or bone marrow transplantation by short tandem repeats. Am J Hematol 1996; 52: 281–287.

    Article  CAS  Google Scholar 

  11. Amrolia P, Vulliamy T, Vassiliou G, Lawson SE, Bryon J, Kaeda J et al. Analysis of chimerism in thalassaemic children undergoing stem cell transplantation. Br J Haematol 2001; 114: 219–225.

    Article  CAS  Google Scholar 

  12. Andreani M, Nesci S, Lucarelli G, Tonucci P, Angelucci E, Persini B et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant 2000; 25: 401–404.

    Article  CAS  Google Scholar 

  13. Gomez J, Garcia M, Serrano J, Sanchez J, Falcon M, Castillejo J et al. Chimerism analysis in long term survivors patients after bone marrow transplantation for severe aplastic anemia. Haematologica 1997; 82: 588–591.

    CAS  PubMed  Google Scholar 

  14. Hill RS, Petersen FB, Storb R, Appelbaum FR, Doney K, Dahlberg S et al. Mixed hematologic chimerism after allogeneic marrow transplantation for severe aplastic anemia is associated with a higher risk of graft rejection and a lessened incidence of acute graft-versus-host disease. Blood 1986; 67: 811–816.

    CAS  PubMed  Google Scholar 

  15. Mital M, Curtis A, Spencer V, Barge D, Skinner R . Delayed engraftment and mixed chimerism after HLA-identical sibling donor BMT in Fanconi anaemia. Bone Marrow Transplant 1999; 24: 201–204.

    Article  CAS  Google Scholar 

  16. McSweeney P, Storb R . Mixed chimerism: preclinical studies and clinical applications. Biol Blood Marrow Transplant 2001; 5: 192–203.

    Article  Google Scholar 

  17. Shimoni A, Nagler A . Non-myeloablative stem cell transplantation (NST): chimerism testing as a guidance for immune-therapeutic manipulations. Leukemia 2001; 15: 1967–1975.

    Article  CAS  Google Scholar 

  18. Carella AM, Champlin R, Slavin S, McSweeney PA, Storb R . Mini-allografts: ongoing trials in humans. Biol Blood Marrow Transplant. 2000; 25: 345–350.

    Article  CAS  Google Scholar 

  19. Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI et al. Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 2001; 344: 881–888.

    Article  CAS  Google Scholar 

  20. Amrolia P, Gaspar HB, Hassan A, Webb D, Jones A, Sturt N et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood 2000; 96: 1239–1246.

    CAS  PubMed  Google Scholar 

  21. Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    CAS  PubMed  Google Scholar 

  22. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S et al. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 1999; 13: 2060–2069.

    Article  CAS  Google Scholar 

  23. Mackinnon S, Barret L, Heller G, O'Reilly R . Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 2001; 83: 3409–3416.

    Google Scholar 

  24. Mattsson J, Uzunel M, Remberger M, Ringden O . T cell mixed chimerism is significantly correlated to a decreased risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation 2001; 71: 433–439.

    Article  CAS  Google Scholar 

  25. Maury S, Jouault H, Kuentz M, Vernant JP, Tulliez M, Cordonnier C et al. Chimerism analysis by lineage-specific fluorescent polymerase chain reaction in secondary graft failure after allogeneic stem cell transplantation. Transplantation 2001; 71: 374–380.

    Article  CAS  Google Scholar 

  26. Niiya H, Kanda Y, Saito T, Ohnishi T, Kanai S, Kawano Y et al. Early full donor myeloid chimerism after reduced-intensity stem cell transplantation using a combination of fludarabine and busulfan. Haematologica 2001; 86: 1071–1074.

    CAS  PubMed  Google Scholar 

  27. Winiarski J, Mattson J, Gustafsson A, Wester D, Borgstrom B, Ringden O et al. Engraftment and chimerism, particularly of T- and B-cells, in children undergoing allogeneic bone marrow transplantation. Pediatr Transplant 1998; 2: 150–156.

    CAS  PubMed  Google Scholar 

  28. Niederwieser D, Maris M, Shizuru JA, Petersdorf E, Hegenbart U, Sandmaier BM et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate-mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood 2003; 101: 1620–1629.

    Article  CAS  Google Scholar 

  29. Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  30. Fritsch G, Printz D, Stimpfl M, Dworzak M, Witt V, Potschger U et al. Quantification of CD34+ cells: comparison of methods. Transfusion 1997; 37: 775–784.

    Article  CAS  Google Scholar 

  31. Schraml E, Daxberger H, Watzinger F, Lion T . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia 2003; 17: 224–227.

    Article  CAS  Google Scholar 

  32. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2001; 7: 473–485.

    Article  CAS  Google Scholar 

  33. van Leeuwen JE, van Tol MJ, Bodzinga BG, Wijnen JT, van der KM, Joosten AM et al. Detection of mixed chimerism in flow-sorted cell subpopulations by PCR-amplified VNTR markers after allogeneic bone marrow transplantation. Br J Haematol 1991; 79: 218–225.

    Article  CAS  Google Scholar 

  34. Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegel P et al. Mixed hematopoietic chimerism after alogeneic marrow transplantation: the impact of quantitative PCR analysis for prediction of relapse and graft rejection in children. Bone Marrow Transplant 2001; 19: 697–702.

    Article  Google Scholar 

  35. Schattenberg A, De Witte T, Salden M, Vet J, Van Dijk B, Smeets D et al. Mixed hematopoietic chimerism after allogeneic transplantation with lymphocyte-depleted bone marrow is not associated with a higher incidence of relapse. Blood 1989; 73: 1367–1372.

    CAS  PubMed  Google Scholar 

  36. Lion T, Daxberger H, Dubovsky J, Filipcik P, Fritsch G, Printz D et al. Analysis of chimerism within specific leukocyte subsets for detection of residual or recurrent leukemia in pediatric patients after allogeneic stem cell transplantation. Leukemia 2001; 15: 307–310.

    Article  CAS  Google Scholar 

  37. Mattsson J, Uzunel M, Tammik L, Aschan J, Ringden O . Leukemia lineage-specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemia 2001; 15: 1976–1985.

    Article  CAS  Google Scholar 

  38. Thiede C, Bornhauser M, Oelschlagel U, Brendel C, Leo R, Daxberger H et al. Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem cell transplantation (BSCT) using multiplex PCR amplification short tandem repeat-markers. Leukemia 2001; 15: 293–302.

    Article  CAS  Google Scholar 

  39. Zetterquist H, Mattson J, Uzunel M, Nasman-Bjork I, Svenberg P, Bayat G et al. Mixed chimerism in the b cell lineage is a rapid and sensitive indicator of minimal residual disease in bone marrow transplant recipients with pre-B cell acute lymphoblastic leukemia. Bone Marrow Transplant 2001; 25: 843–851.

    Article  Google Scholar 

  40. Battaglia M, Anreani M, Manna M, Nesci S, Tonucci P, Persini B et al. Coexistence of two functioning T-cell repertoires in healthy ex-Thalassemics bearing a persistent mixed chimerism years after bone marrow transplantation. Blood 1999; 94: 3432–3438.

    CAS  PubMed  Google Scholar 

  41. Haddad E, Le Deist F, Aucouturier P, Cavazzana-Calvo M, Blanche S, De Saint Basile G et al. Long-term chimerism and b-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B-cells: a single-center study of 22 patients. Blood 1999; 94: 2923–2930.

    CAS  PubMed  Google Scholar 

  42. Passweg JR, Meyer-Monard S, Gregor M, Favre G, Heim D, Ebnoether M et al. High stem cell dose will not compensate for T cell depletion in allogeneic non-myeloablative stem cell transplantation. Bone Marrow Transplant 2002; 30: 267–271.

    Article  CAS  Google Scholar 

  43. Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G, Canizo C et al. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 2002; 16: 1423–1431.

    Article  CAS  Google Scholar 

  44. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molidrem J, Chauncey TR et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  Google Scholar 

  45. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, Roosnek E . Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87: 3984–3992.

    CAS  PubMed  Google Scholar 

  46. Sykes M, Preffer F, McAfee S, Saidman S, Weymouth D, Andrews D et al. Mixed lymphohematopoietic chimerism and graft versus lymphoma effects after nonmyeloablative therapy and HLA-mismatched bone marrow transplantation. Lancet 1999; 16: 1755–1759.

    Article  Google Scholar 

  47. Schaap N, Schattenberg A, Mensink E, Preijers F, Hillegers M, Knops R et al. Long-term follow-up of persisting mixed chimerism after partially T cell-depleted allogeneic stem cell transplantation. Leukemia 2002; 16: 13–21.

    Article  CAS  Google Scholar 

  48. Gyger M, Baron C, Forest L, Lussier P, Lagace F, Bissonnette I et al. Quantitative assessment of hematopoietic chimerism after allogeneic bone marrow transplantation has predictive value for the occurrence of irreversible graft failure and graft-vs-host disease. Exp Hematol 1998; 26: 426–434.

    CAS  PubMed  Google Scholar 

  49. Mackinnon S, Barnett L, Bourhis JH, Black P, Heller G, O'Reilly RJ . Myeloid and lymphoid chimerism after T-cell-depleted bone marrow transplantation: evaluation of conditioning regimens using the polymerase chain reaction to amplify human minisatellite regions of genomic DNA. Blood 1992; 80: 3235–3241.

    CAS  PubMed  Google Scholar 

  50. Valcarcel D, Martino R, Caballero D, Mateos M, Perez-Simon J, Canals C et al. Chimerism analysis following allogeneic peripheral blood stem cell transplantation with reduced intensity conditioning. Bone Marrow Transplant 2003; 31: 387–392.

    Article  CAS  Google Scholar 

  51. Kreiter S, Winkelmann N, Schneider PM, Schuler M, Fischer T, Ullmann AJ et al. Failure of sustained engraftment after non-myeloablative conditioning with low-dose TBI and T cell-reduced allogeneic peripheral stem cell transplantation. Bone Marrow Transplant 2001; 28: 157–161.

    Article  CAS  Google Scholar 

  52. Urbano-Ispizua A, Rozman C, Pimentel P, Solano C, de la RJ, Brunet S et al. The number of donor CD3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLA-identical siblings. Blood 2001; 97: 383–387.

    Article  CAS  Google Scholar 

  53. Görner M, Kordelas L, Thalheimer M, Luft T, Pfeiffer S, Ustaoglu F et al. Stable mixed chimerism after T cell-depleted allogeneic hematopoietic stem cell transplantation using conditioning with low-dose total body irradiation and fludarabine. Bone Marrow Transplant 2002; 29: 621–624.

    Article  Google Scholar 

  54. Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114.

    Article  CAS  Google Scholar 

  55. Bornhauser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin Cancer Res 2001; 7: 2254–2262.

    CAS  PubMed  Google Scholar 

  56. Bertrand Y, Landais P, Friedrich W, Gerritson E, Morgan G, Fasth A et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the European society for immunodeficiency. J Pediatr 1999; 134: 740–748.

    Article  CAS  Google Scholar 

  57. Kawai T, Wee SL, Bazin H, Latinne D, Phelan J, Boskovic S et al. Association of natural killer cell depletion with induction of mixed chimerism and allograft tolerance in non-human primates. Transplantation 2000; 70: 368–374.

    Article  CAS  Google Scholar 

  58. Lee LA, Sergio JJ, Sykes M . Natural killer cells weakly resist engraftment of allogeneic, long-term, multilineage-repopulating hematopoietic stem cells. Transplantation 1996; 61: 125–132.

    Article  CAS  Google Scholar 

  59. Neipp M, Gammie JS, Exner BG, Li S, Chambers WH, Pham SM et al. A partial conditioning approach to achieve mixed chimerism in the rat: depletion of host natural killer cells significantly reduces the amount of total body irradiation required for engraftment. Transplantation 1999; 68: 369–378.

    Article  CAS  Google Scholar 

  60. Tiberghien P, Longo DL, Wine JW, Alvord WG, Reynolds CW . Anti-asialo GM1 antiserum treatment of lethally irradiated recipients before bone marrow transplantation: evidence that recipient natural killer depletion enhances survival, engraftment, and hematopoietic recovery. Blood 1990; 76: 1419–1430.

    CAS  PubMed  Google Scholar 

  61. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  Google Scholar 

  62. Bornhauser M, Thiede C, Brendel C, Geissler G, Oelschlagel U, Neubauer A et al. Stable engraftment after megadose blood stem cell transplantation across the HLA barrier: the case for natural killer cells as graft-facilitating cells. Transplantation 1999; 68: 87–88.

    Article  CAS  Google Scholar 

  63. Murphy WJ, Koh CY, Raziuddin A, Bennett M, Longo DL . Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol Rev 2001; 181: 279–289.

    Article  CAS  Google Scholar 

  64. Shilling H, McQueen K, Cheng N, Shizuru J, Negrin R, Parham P . Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101: 3730–3740.

    Article  CAS  Google Scholar 

  65. Farag S, Fehniger T, Ruggeri L, Velardi A, Caliguri M . Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    Article  CAS  Google Scholar 

  66. Gagne K, Brizard G, Gueglio B, Milpied N, Herry P, Bonneville F et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol 2002; 63: 271–280.

    Article  CAS  Google Scholar 

  67. D'Orazio J, Burke J, Stein-Streilein J . Staphylococcal Enterotoxin B activates purified NK cells to secrete IFN-y but requires T lymphocytes to augment NK cytotoxicity. J Immunol 1994; 154: 1014–1023.

    Google Scholar 

  68. Groh V, Rhinehart R, Randolph-Habecker J, Topp M, Riddell S, Spies T . Costimulation of CDaβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2001; 2: 255–260.

    Article  CAS  Google Scholar 

  69. Johnson T, Hong S, Van Kaer L, Koezuka Y, Graham B . NK T cells contribute to expansion of CD8+ T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 2002; 76: 4294–4303.

    Article  CAS  Google Scholar 

  70. Das S, Varalakshmi C, Kumari A, Patel M, Khar A . Target cell induced activation of NK cells in vitro: cytokine production and enhancement of cytotoxic function. Cancer Immunol Immunother 2001; 50: 428–436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthes-Martin, S., Lion, T., Haas, O. et al. Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK cell chimaerism for late graft rejection. Leukemia 17, 1934–1942 (2003). https://doi.org/10.1038/sj.leu.2403087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403087

  • Springer Nature Limited

Keywords

This article is cited by

Navigation