Skip to main content
Log in

Successful weight maintenance preserves lower levels of oxidized LDL achieved by weight reduction in obese men

  • Original Article
  • Published:
International Journal of Obesity Submit manuscript

Abstract

Objective:

We studied the association between weight maintenance, oxidized low-density lipoprotein (ox-LDL) and other lipoproteins in obese men.

Methods:

A 2-month weight reduction phase (WRP) with a very-low-energy diet was followed by a 6-month weight maintenance period and an unsupervised 2-year follow-up. Ninety men entered and 68 (76%) completed the study. Subjects were analyzed as one group and after division into two subgroups: 20 most successful men in maintaining the lost weight (subgroup 1) and the remaining (n=48) men (subgroup 2). Ox-LDL was measured by quantifying the amount of conjugated dienes in LDL particles.

Results:

The mean (±s.d.) weight reduction at the end of the WRP (n=68) was 14% (confidence interval (CI) 12.9–14.7%, 14.5±4.2 kg, P<0.001). Ox-LDL decreased by 22% (CI 16.9–28.1, 12.3±15.4 μmol/l, P<0.001). At the end of the 2-year follow-up, the regain in weight from the end of the WRP was 11% (CI 9.0–12.4, 9.6±6.2 kg, P<0.001). The regain in ox-LDL was 30% (CI 18.7–41.2, 8.2±15.4 μmol/l, P<0.001). In subgroup 1 vs 2, the respective regains were 3% (CI 0.9–4.2, 2.2±3.0 kg, P=0.006) vs 14% (CI 12.7–15.6, 12.9±4.0 kg, P<0.001) regarding weight and 9% (2.0±6.9 μmol/l, P=NS) vs 39% (CI 23.7–53.9, 11.2±17.2 μmol/l, P⩽0.001) in ox-LDL.

Conclusion:

The favorable changes seen in ox-LDL particles and serum lipids during weight reduction could be maintained by keeping the weight reduced, which may indicate decreased risk of atherosclerosis. But weight regain causes a resurge of ox-LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brown MS, Goldstein JL . A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47.

    Article  CAS  Google Scholar 

  2. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C et al. Regression of the coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–1298.

    Article  CAS  Google Scholar 

  3. McCord JM . The evolution of free radicals and oxidative stress. Am J Med 2000; 108: 652–659.

    Article  CAS  Google Scholar 

  4. Juul K, Nielsen LB, Munkholm K, Stender S, Nordestgaard BG . Oxidation of plasma low-density lipoprotein accelerates its accumulation and degradation in the arterial wall in vivo. Circulation 1996; 94: 1698–1704.

    Article  CAS  Google Scholar 

  5. Holvoet P, Collen D . Oxidation of low density lipoproteins in the pathogenesis of atherosclerosis. Atherosclerosis 1998; 137 (Suppl): S33–S38.

    Article  CAS  Google Scholar 

  6. Vasankari T, Ahotupa M, Toikka J, Mikkola J, Irjala K, Pasanen P et al. Oxidized LDL and thickness of carotid intima–media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 2001; 155: 403–412.

    Article  CAS  Google Scholar 

  7. de Graaf J, Hak-Lemmers HLM, Hectors MPC, Demacker PNM, Hendriks JCM, Stalenhoef AFH . Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 1991; 11: 298–306.

    Article  CAS  Google Scholar 

  8. Tribble DL, Holl LG, Wood PD, Krauss RM . Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 1992; 93: 189–199.

    Article  CAS  Google Scholar 

  9. Chait A, Brazg RL, Tribble DL . Susceptibility of small, dense low density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med 1993; 94: 350–356.

    Article  CAS  Google Scholar 

  10. Gardner CD, Fortmann SP, Krauss RM . Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. J Am Med Assoc 1996; 276: 875–881.

    Article  CAS  Google Scholar 

  11. Grundy SM . Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr 1998; 67 (Suppl): 563S–572S.

    Article  CAS  Google Scholar 

  12. Thompson CJ, Ryu JE, Craven TE, Kahl FR, Crouse III JR . Central adipose distribution is related to coronary atherosclerosis. Arterioscler Thromb 1991; 11: 327–333.

    Article  CAS  Google Scholar 

  13. Jousilahti P, Tuomilehto J, Vartiainen E, Pekkanen J, Puska P . Body weight, cardiovascular risk factors, and coronary mortality. Circulation 1996; 93: 1372–1379.

    Article  CAS  Google Scholar 

  14. Lakka TA, Lakka H-M, Salonen R, Kaplan GA, Salonen JT . Abdominal obesity is associated with accelerated progression of carotid atherosclerosis in men. Atherosclerosis 2001; 154: 497–504.

    Article  CAS  Google Scholar 

  15. National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity and health risk. Arch Intern Med 2000; 160: 898–904.

  16. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P . Sex, age, cardiovascular risk factors, and coronary heart disease. Circulation 1999; 99: 1165–1172.

    Article  CAS  Google Scholar 

  17. Salomaa V, Ketonen M, Koukkunen H, Immonen-Raiha P, Jerkkola T, Karja-Koskenkari P et al. Trends in coronary events in Finland during 1983–1997; the FINAMI study. Eur Heart J 2003; 24: 311–319.

    Article  CAS  Google Scholar 

  18. Vasankari T, Fogelholm M, Kukkonen-Harjula K, Nenonen A, Kujala U, Oja P et al. Reduced oxidized low-density lipoprotein after weight reduction in obese premenopausal women. Int J Obes Relat Metab Disord 2001; 25: 205–211.

    Article  CAS  Google Scholar 

  19. Ahotupa M, Vasankari TJ . Baseline diene conjugation in LDL lipids: an indicator of circulating oxidised LDL. Free Radic Biol Med 1999; 27: 1141–1150.

    Article  CAS  Google Scholar 

  20. Borg P, Kukkonen-Harjula K, Fogelholm M, Pasanen P . Effects of walking or resistance training on weight loss maintenance in obese, middle-aged men: a randomized trial. Int J Obes Relat Metab Disord 2002; 26: 676–683.

    Article  CAS  Google Scholar 

  21. Hendersson M, Freeman CPL . A self-rating scale for bulimia. The ‘BITE’. Br J Psychiatr 1987; 105: 18–24.

    Article  Google Scholar 

  22. Nguyen T, Warnick GR . Improved methods of total HDL and subclasses. Clin Chem 1989; 35: 1086.

    Google Scholar 

  23. Friedewald WT, Levy RI, Fredrickson DS . Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502.

    CAS  PubMed  Google Scholar 

  24. Ahotupa M, Ruutu M, Mäntylä E . Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 1996; 29: 139–144.

    Article  CAS  Google Scholar 

  25. Weiland H, Seidel D . A simple specific method for predipitation of low density lipoproteins. J Lipid Res 1983; 24: 904–909.

    Google Scholar 

  26. Siri WE . The gross composition of the body. In: Tobias CA, Lawrence JH (eds). Advances in Biological and Medical Physics. Academic Press: New York, 1956, pp 239–280.

    Google Scholar 

  27. Morrow JD . Is oxidant stress a connection between obesity and atherosclerosis? Arterioscler Thromb Vasc Biol 2003; 23: 368–370.

    Article  CAS  Google Scholar 

  28. Keaney Jr JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol 2003; 23: 434–439.

    Article  CAS  Google Scholar 

  29. Weinstock RS, Dai H, Wadden TA . Diet and exercise in the treatment of obesity. Arch Intern Med 1998; 158: 2477–2483.

    Article  CAS  Google Scholar 

  30. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL . Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–924.

    Article  CAS  Google Scholar 

  31. Witztum JL . The oxidation hypothesis of atherosclerosis. Lancet 1994; 344: 793–795.

    Article  CAS  Google Scholar 

  32. Mertens A, Holvoet P . Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 2001; 15: 2073–2084.

    Article  CAS  Google Scholar 

  33. Ahotupa M, Marniemi J, Lehtimäki T, Talvinen K, Raitakari OT, Vasankari T et al. Baseline diene conjugation in LDL lipids as a direct measure of in vivo LDL oxidation. Clin Biochem 1998; 31: 257–261.

    Article  CAS  Google Scholar 

  34. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT . Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002; 23: 706–713.

    Article  Google Scholar 

  35. Barakat HA, Burton DS, Carpenter JW, Holbert D, Israel RG . Body fat distribution, plasma lipoproteins and the risk of coronary heart disease of male subjects. Int J Obes Relat Metab Disord 1988; 12: 473–480.

    CAS  Google Scholar 

  36. Grundy SM . Approach to lipoprotein management in 2001 national cholesterol guidelines. Am J Cardiol 2002; 90 (Suppl): 11i–21i.

    Article  CAS  Google Scholar 

  37. Kukkonen-Harjula KT, Borg PT, Nenonen AM, Fogelholm MG . Effects of a weight maintenance program with or without exercise on the metabolic syndrome: a randomized trial in obese men. Prev Med 2005; 41: 784–790.

    Article  Google Scholar 

  38. Vasankari T, Kujala UM, Vasankari TM, Ahotupa M . Reduced oxidized LDL levels after a 10-month exercise program. Med Sci Sports Exerc 1998; 30: 1496–1501.

    Article  CAS  Google Scholar 

  39. Sarlio-Lähteenkorva S, Rissanen A, Kaprio J . A descriptive study of weight loss maintenance: 6 and 15 year follow-up of initially overweight adults. Int J Obes Relat Metab Disord 2000; 24: 116–125.

    Article  Google Scholar 

  40. Tryon WW, Goldberg JL, Morrison DF . Activity decreases as percentage overweight increases. Int J Obes Relat Metab Disord 1992; 16: 591–595.

    CAS  PubMed  Google Scholar 

  41. Fogelholm M, Kukkonen-Harjula K, Nenonen A, Pasanen P . Effects of walking training on weight maintenance after a very-low-energy diet in premenopausal obese women. Arch Intern Med 2000; 160: 2177–2184.

    Article  CAS  Google Scholar 

  42. Kannel WB, Wilson PWF, Nam B-H, D'Agostino RB . Risk stratification of obesity as a coronary risk factor. Am J Cardiol 2002; 90: 697–701.

    Article  Google Scholar 

  43. Torjesen PA, Hjermann I, Birkeland KI, Holme I, Anderssen SA, Urdal P . Lifestyle changes may reverse development of the insulin resistance syndrome. Diabetes Care 1997; 20: 26–31.

    Article  CAS  Google Scholar 

  44. Tuomilehto J, Lindstöm J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al., for the Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Juho Vainio Foundation, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Linna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linna, M., Borg, P., Kukkonen-Harjula, K. et al. Successful weight maintenance preserves lower levels of oxidized LDL achieved by weight reduction in obese men. Int J Obes 31, 245–253 (2007). https://doi.org/10.1038/sj.ijo.0803413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803413

  • Springer Nature Limited

Keywords

This article is cited by

Navigation