Skip to main content

Advertisement

Log in

Non-destructive characterization techniques for battery performance and life-cycle assessment

  • Review Article
  • Published:

From Nature Reviews Electrical Engineering

View current issue Sign up to alerts

Abstract

Improving the performance and efficiency of batteries is key to enabling the broader adoption of electric vehicles and the effective use of intermittent renewable energy sources. However, this enhancement demands a more comprehensive understanding and improved surveillance of the essential mechanisms that control battery functionality over their entire lifespan. Unfortunately, from the moment batteries are sealed until their end of life, they remain a ‘black box’, and our knowledge of the health status of a commercial battery is limited to current (I), voltage (V), temperature (T) and impedance (R) measurements, at the cell or even module level during use, leading to an over-reliance on insufficient data to establish conservative safety margins and a systematic under-utilization of cells and batteries. Although the field of operando characterization is not new, the emergence of techniques capable of tracking commercial battery properties under realistic conditions has unlocked a trove of chemical, thermal and mechanical data that have the potential to revolutionize the development and utilization strategies of both new and used lithium-ion devices. In this Review, we examine the latest advances in non-destructive characterization techniques, including electrical sensors, optical fibres, acoustic transducers, X-ray-based imaging and thermal imaging (infrared camera or calorimetry), and their potential to improve our comprehension of degradation mechanisms, reduce time and cost, and enhance battery performance throughout their three main life stages: during the manufacturing process, during their utilization and, finally, at the end of their life.

Key points

  • Non-destructive techniques capable of tracking commercial battery properties under realistic conditions have unlocked chemical, thermal and mechanical data with the potential to accelerate and optimize the development and utilization strategies of lithium-ion devices, both new and used.

  • Before use, battery assembly wetting and formation cycles should be carefully monitored using imaging or advanced electrochemical techniques to reduce the scrap rate. This could be achieved using tomography, acoustic imaging or spectroscopic characterization.

  • During use, thermal and mechanical phenomena at the cell level could contribute to enhance the battery management system (BMS). In this context, electrical and optical sensors offer large versatility of shape, sensitivity and accuracy.

  • After use, accurate evaluation of battery degradation at the cell level and determination of their true end-of-life status is crucial for second-life applications. To preserve battery integrity, acoustic and thermographic imaging appear promising techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Road map of non-destructive characterization techniques for comprehensive commercial battery life-cycle analysis.
Fig. 2: Non-destructive characterization to understand the battery manufacturing process, including battery assembling, battery wetting and formation cycles.
Fig. 3: Non-destructive characterization opportunities for electric vehicles.
Fig. 4: Characterization of batteries for end-of-life or second-life options.
Fig. 5: Towards battery traceability.

Similar content being viewed by others

References

  1. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016). This review discusses the key advances in sustainable chemistries and operando techniques for battery development.

    Article  Google Scholar 

  2. Wang, X., Li, Y. & Meng, Y. S. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    Article  Google Scholar 

  3. Richard, M. N. & Dahn, J. R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. II. Modeling the results and predicting differential scanning calorimeter curves. J. Electrochem. Soc. 146, 2078 (1999).

    Article  Google Scholar 

  4. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  Google Scholar 

  5. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  Google Scholar 

  6. Blanc, F., Leskes, M. & Grey, C. P. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc. Chem. Res. 46, 1952–1963 (2013).

    Article  Google Scholar 

  7. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  Google Scholar 

  8. Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).

    Article  Google Scholar 

  9. Li, W. et al. Peering into batteries: electrochemical insight through in situ and operando methods over multiple length scales. Joule 5, 77–88 (2021).

    Article  Google Scholar 

  10. Liu, Y., Zhang, R., Wang, J. & Wang, Y. Current and future lithium-ion battery manufacturing. iScience 24, 102332 (2021).

    Article  Google Scholar 

  11. Brückner, L., Frank, J. & Elwert, T. Industrial recycling of lithium-ion batteries — a critical review of metallurgical process routes. Metals 10, 1107 (2020).

    Article  Google Scholar 

  12. Huang, J., Boles, S. T. & Tarascon, J.-M. Sensing as the key to battery lifetime and sustainability. Nat. Sustain. 5, 194–204 (2022). This review describes in detail the latest advance and benefits of optical sensors for battery monitoring.

    Article  Google Scholar 

  13. Fichtner, M. et al. Rechargeable batteries of the future — the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12, 2102904 (2022).

    Article  Google Scholar 

  14. Xiao, J., Shi, F., Glossmann, T., Burnett, C. & Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023).

    Article  Google Scholar 

  15. Benavente, L. et al. FTIR mapping as a simple and powerful approach to study membrane coating and fouling. J. Membr. Sci. 520, 477–489 (2016).

    Article  Google Scholar 

  16. Julien, C. M., Mauger, A., Julien, C. M. & Mauger, A. In situ Raman analyses of electrode materials for Li-ion batteries. AIMS Mater. Sci. 5, 650–698 (2018).

    Article  Google Scholar 

  17. Zhang, R. et al. A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. Energies 11, 2408 (2018).

    Article  Google Scholar 

  18. Chacón, X. C. A., Laureti, S., Ricci, M. & Cappuccino, G. A review of non-destructive techniques for lithium-Ion battery performance analysis. World Electr. Veh. J. 14, 305 (2023).

    Article  Google Scholar 

  19. Padha, B. et al. Role of electrochemical techniques for photovoltaic and supercapacitor applications. Crit. Rev. Anal. Chem. 54, 707–745 (2024).

    Article  Google Scholar 

  20. Gaberšček, M. Impedance spectroscopy of battery cells: theory versus experiment. Curr. Opin. Electrochem. 32, 100917 (2022).

    Article  Google Scholar 

  21. Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 247, 332–338 (2014).

    Article  Google Scholar 

  22. Wu, Y. et al. Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography. Energies 11, 925 (2018).

    Article  Google Scholar 

  23. McGovern, M. E. et al. A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing. J. Power Sources 561, 232742 (2023).

    Article  Google Scholar 

  24. Hoffmann, L. et al. High-potential test for quality control of separator defects in battery cell production. Batteries 7, 64 (2021).

    Article  Google Scholar 

  25. Kong, L., Aalund, R., Alipour, M., Stoliarov, S. I. & Pecht, M. Evaluating the manufacturing quality of lithium ion pouch batteries. J. Electrochem. Soc. 169, 040541 (2022).

    Article  Google Scholar 

  26. Etiemble, A. et al. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography. J. Power Sources 298, 285–291 (2015).

    Article  Google Scholar 

  27. Günter, F. J., Burgstaller, C., Konwitschny, F. & Reinhart, G. Influence of the electrolyte quantity on lithium-ion cells. J. Electrochem. Soc. 166, A1709 (2019).

    Article  Google Scholar 

  28. Günter, F. J. et al. Introduction to electrochemical impedance spectroscopy as a measurement method for the wetting degree of lithium-ion cells. J. Electrochem. Soc. 165, A3249 (2018).

    Article  Google Scholar 

  29. Taheri, P., Hsieh, S. & Bahrami, M. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. J. Power Sources 196, 6525–6533 (2011).

    Article  Google Scholar 

  30. Cui, H. et al. Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy 104, 107874 (2022).

    Article  Google Scholar 

  31. Weydanz, W. J. et al. Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process. J. Power Sources 380, 126–134 (2018).

    Article  Google Scholar 

  32. Habedank, J. B. et al. Rapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ visualization by neutron radiography. Int. J. Adv. Manuf. Technol. 102, 2769–2778 (2019).

    Article  Google Scholar 

  33. Schilling, A. et al. X-ray based visualization of the electrolyte filling process of lithium ion batteries. J. Electrochem. Soc. 166, A5163 (2018).

    Article  Google Scholar 

  34. Knoche, T. et al. In situ visualization of the electrolyte solvent filling process by neutron radiography. J. Power Sources 331, 267–276 (2016).

    Article  Google Scholar 

  35. Masuch, S., Gümbel, P., Kaden, N. & Dröder, K. Applications and development of X-ray inspection techniques in battery cell production. Processes 11, 10 (2023).

    Article  Google Scholar 

  36. Worrell, C. A. & Redfern, B. A. W. Acoustic emission studies of the breakdown of β-alumina under conditions of sodium ion transport. J. Mater. Sci. 13, 1515–1520 (1978).

    Article  Google Scholar 

  37. G. Hsieh, A. et al. Electrochemical–acoustic time of flight: in operando correlation of physical dynamics with battery charge and health. Energy Environ. Sci. 8, 1569–1577 (2015).

    Article  Google Scholar 

  38. Schmerr, L. W. Jr. Fundamentals of Ultrasonic Nondestructive Evaluation (Springer, 2016).

  39. Deng, Z. et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule 4, 2017–2029 (2020). This work utilizes an ultrasonic imaging technique to investigate the wetting process of lithium-ion batteries.

    Article  Google Scholar 

  40. Peled, E. & Menkin, S. Review — SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017).

    Article  Google Scholar 

  41. Pathan, T. S., Rashid, M., Walker, M., Widanage, W. D. & Kendrick, E. Active formation of Li-ion batteries and its effect on cycle life. J. Phys. Energy 1, 044003 (2019).

    Article  Google Scholar 

  42. Weng, A. et al. Predicting the impact of formation protocols on battery lifetime immediately after manufacturing. Joule 5, 2971–2992 (2021).

    Article  Google Scholar 

  43. Aiken, C. P. et al. An apparatus for the study of in situ gas evolution in Li-ion pouch cells. J. Electrochem. Soc. 161, A1548 (2014).

    Article  Google Scholar 

  44. Li, R. et al. Non-destructive local degradation detection in large format lithium-ion battery cells using reversible strain heterogeneity. J. Energy Storage 40, 102788 (2021).

    Article  Google Scholar 

  45. Louli, A. J., Ellis, L. D. & Dahn, J. R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 3, 745–761 (2019).

    Article  Google Scholar 

  46. Bommier, C. et al. Operando acoustic monitoring of sei formation and long-term cycling in NMC/SiGr composite pouch cells. J. Electrochem. Soc. 167, 020517 (2020).

    Article  Google Scholar 

  47. Huang, J. et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020). This work utilizes FBG sensors to monitor heat generated by a battery by microcalorimetry in operando.

    Article  Google Scholar 

  48. Huang, J. et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors. Energy Environ. Sci. 14, 6464–6475 (2021).

    Article  Google Scholar 

  49. Miele, E. et al. Operando Raman analysis of electrolyte changes in Li-ion batteries with hollow-core optical fibre sensors. Preprint at ResearchGate https://doi.org/10.21203/rs.3.rs-531818/v1 (2021). Using hollow core fibres, this study investigates electrolyte evolution by operando Raman spectroscopy.

  50. Gervillié-Mouravieff, C. et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 7, 1157–1169 (2022). This work achieves operando infrared spectroscopy of electrolyte and battery material using infrared spectroscopy based on chalcogenide optical fibres.

    Article  Google Scholar 

  51. Wang, Y. et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 131, 110015 (2020).

    Article  Google Scholar 

  52. Ardeshiri, R. R., Balagopal, B., Alsabbagh, A., Ma, C. & Chow, M.-Y. in IEEE International Conf. Industrial Electronics for Sustainable Energy Systems (IESES) Vol. 1, 61–66 (2020).

  53. Otto, A. et al. in Advanced Microsystems for Automotive Applications (ed. Meyer, G.) 3–14 (Springer, 2012).

  54. Liebhart, B., Komsiyska, L. & Endisch, C. Passive impedance spectroscopy for monitoring lithium-ion battery cells during vehicle operation. J. Power Sources 449, 227297 (2020).

    Article  Google Scholar 

  55. Kellner, Q., Worwood, D., Barai, A., Widanage, W. D. & Marco, J. Duty-cycle characterisation of large-format automotive lithium ion pouch cells for high performance vehicle applications. J. Energy Storage 19, 170–184 (2018).

    Article  Google Scholar 

  56. Lee, C.-Y. et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries. Sensors 15, 11485–11498 (2015).

    Article  Google Scholar 

  57. Huang, J., Blanquer, L. A., Gervillié, C. & Tarascon, J.-M. Distributed fiber optic sensing to assess in-live temperature imaging inside batteries: Rayleigh and FBGs. J. Electrochem. Soc. 168, 060520 (2021).

    Article  Google Scholar 

  58. Gervillié-Mouravieff, C., Albero Blanquer, L., Alphen, C., Huang, J. & Tarascon, J.-M. Unraveling SEI formation and cycling behavior of commercial Ni-rich NMC Li-ion pouch cells through operando optical characterization. J. Power Sources 580, 233268 (2023).

    Article  Google Scholar 

  59. Mei, W. et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023).

    Article  Google Scholar 

  60. Louli, A. J., Li, J., Trussler, S., Fell, C. R. & Dahn, J. R. Volume, pressure and thickness evolution of Li-ion pouch cells with silicon-composite negative electrodes. J. Electrochem. Soc. 164, A2689 (2017).

    Article  Google Scholar 

  61. Knobloch, A. et al. Fabrication of multimeasurand sensor for monitoring of a Li-ion battery. J. Electron. Packag. 140, 031002 (2018).

    Article  Google Scholar 

  62. Rente, B. et al. Lithium-ion battery state-of-charge estimator based on FBG-based strain sensor and employing machine learning. IEEE Sens. J. 21, 1453–1460 (2021).

    Article  Google Scholar 

  63. Choi, W., Seo, Y., Yoo, K., Ko, T. J. & Choi, J. in 20th International Conf. Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)) 2356–2359 (2019).

  64. Padha, B., Verma, S., Mahajan, P., Sundramoorthy, A. K. & Arya, S. An insight into the wearable technologies based on novel hybrid piezoelectric–triboelectric nanogenerators. Energy Technol. 11, 2300224 (2023).

    Article  Google Scholar 

  65. Chen, Z. et al. Detection of jelly roll pressure evolution in large-format Li-ion batteries via in situ thin film flexible pressure sensors. J. Power Sources 566, 232960 (2023).

    Article  Google Scholar 

  66. Zhu, S. et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power Sources 516, 230669 (2021).

    Article  Google Scholar 

  67. Albero Blanquer, L. et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 (2022).

    Article  Google Scholar 

  68. Bock, W. J., Chen, J., Eftimov, T. & Urbanczyk, W. A photonic crystal fiber sensor for pressure measurements. IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).

    Article  Google Scholar 

  69. Casals, L. C., Amante García, B. & Canal, C. Second life batteries lifespan: rest of useful life and environmental analysis. J. Environ. Manage. 232, 354–363 (2019).

    Article  Google Scholar 

  70. Zhu, J. et al. End-of-life or second-life options for retired electric vehicle batteries. Cell Rep. Phys. Sci. 2, 100537 (2021). This perspective evaluates the feasibility of second-life battery applications from economic and technological perspectives.

    Article  Google Scholar 

  71. Lee, K. & Kum, D. Development of cell selection framework for second-life cells with homogeneous properties. Int. J. Electr. Power Energy Syst. 105, 429–439 (2019).

    Article  Google Scholar 

  72. Dahn, H. M., Smith, A. J., Burns, J. C., Stevens, D. A. & Dahn, J. R. User-friendly differential voltage analysis freeware for the analysis of degradation mechanisms in Li-Ion batteries. J. Electrochem. Soc. 159, A1405 (2012).

    Article  Google Scholar 

  73. Zhang, W., Li, T., Wu, W., Ouyang, N. & Huang, G. Data-driven state of health estimation in retired battery based on low and medium-frequency electrochemical impedance spectroscopy. Measurement 211, 112597 (2023).

    Article  Google Scholar 

  74. Hu, X., Xu, L., Lin, X. & Pecht, M. Battery lifetime prognostics. Joule 4, 310–346 (2020).

    Article  Google Scholar 

  75. Hu, W., Peng, Y., Wei, Y. & Yang, Y. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-Ion batteries. J. Phys. Chem. C. 127, 4465–4495 (2023).

    Article  Google Scholar 

  76. Yang, Y. et al. Quantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater. 9, 1900674 (2019).

    Article  Google Scholar 

  77. Bond, T., Zhou, J. & Cutler, J. Electrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries. J. Electrochem. Soc. 164, A6158 (2016).

    Article  Google Scholar 

  78. Goutam, S., Timmermans, J.-M., Omar, N., den Bossche, P. V. & Van Mierlo, J. Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography. Energies 8, 8175–8192 (2015).

    Article  Google Scholar 

  79. Giammichele, L., D’Alessandro, V., Falone, M. & Ricci, R. Thermal behaviour assessment and electrical characterisation of a cylindrical lithium-ion battery using infrared thermography. Appl. Therm. Eng. 205, 117974 (2022).

    Article  Google Scholar 

  80. Milojevic, Z. et al. Influence of orientation on ageing of large-size pouch lithium-ion batteries during electric vehicle life. J. Power Sources 506, 230242 (2021).

    Article  Google Scholar 

  81. Ren, D. et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2, 100034 (2019).

    Article  Google Scholar 

  82. Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article  Google Scholar 

  83. Geng, F. et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 33, 8223–8234 (2021).

    Article  Google Scholar 

  84. Bommier, C. et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells. Cell Rep. Phys. Sci. 1, 100035 (2020). This study describes the use of acoustic ultrasound to detect lithium metal plating on commercial graphite batteries.

    Article  Google Scholar 

  85. Lu, X., Tarascon, J.-M. & Huang, J. Perspective on commercializing smart sensing for batteries. eTransportation 14, 100207 (2022).

    Article  Google Scholar 

  86. Ma, G. et al. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning. Energy Environ. Sci. 15, 4083–4094 (2022).

    Article  Google Scholar 

  87. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    Article  Google Scholar 

  88. Bandyopadhyay, S. et al. Machine kearning model using a fiber Bragg grating-based sensor system to measure attery state-of-charge. In 27th International Conference on Optical Fiber Sensors, Technical Digest Series W4.17 (Optica Publishing Group, 2022).

  89. Ganguli, A. et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation. J. Power Sources 341, 474–482 (2017).

    Article  Google Scholar 

  90. Li, Y. et al. A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements. Appl. Energy 325, 119787 (2022).

    Article  Google Scholar 

  91. Bandyopadhyay, S., Fabian, M., Li, K., Sun, T. & Grattan, K. T. V. Fiber-Bragg-grating-based sensor system to measure battery state of charge based on a machine learning model. Batteries 9, 508 (2023).

    Article  Google Scholar 

  92. Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid. State Electrochem. 21, 1939–1964 (2017).

    Article  Google Scholar 

  93. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article  Google Scholar 

  94. Tan, D. H. S., Meng, Y. S. & Jang, J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective. Joule 6, 1755–1769 (2022).

    Article  Google Scholar 

  95. Chang, W. et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal–Li7La3Zr2O12 interface. Nat. Commun. 12, 6369 (2021).

    Article  Google Scholar 

  96. Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC.

  97. Adisorn, T., Tholen, L. & Götz, T. Towards a digital product passport fit for contributing to a circular economy. Energies 14, 2289 (2021).

    Article  Google Scholar 

  98. Verma, S. et al. 3D MXenes for supercapacitors: current status, opportunities and challenges. Prog. Solid. State Chem. 72, 100425 (2023).

    Article  Google Scholar 

  99. Bonefacino, J. et al. High-fidelity strain and temperature measurements of li-ion batteries using polymer optical fiber sensors. J. Electrochem. Soc. 169, 100508 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Cummins Inc. company for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to discussion of the content. C.G.-M. wrote the article. All the authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ying Shirley Meng.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gervillié-Mouravieff, C., Bao, W., Steingart, D.A. et al. Non-destructive characterization techniques for battery performance and life-cycle assessment. Nat Rev Electr Eng 1, 547–558 (2024). https://doi.org/10.1038/s44287-024-00069-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00069-y

  • Springer Nature Limited

Navigation