Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method to determine the chemical structure, 3D structure and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR spectroscopy as applied to the wide range of solid systems. The nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins in solid-state NMR are the same as in liquid-state NMR spectroscopy. However, because of the orientation dependence of the nuclear spin interactions in the solid state, the majority of high-resolution solid-state NMR spectra are measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials and inorganic solids. Continuing development of sensitivity-enhancement NMR approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization and experiments in ultra-high magnetic fields, is described. We highlight recent applications of solid-state NMR spectroscopy to biological and materials chemistry. The Primer ends with a discussion of current limitations as well as areas of development of solid-state NMR spectroscopy and points to emerging areas of applications of this sophisticated spectroscopy.
Similar content being viewed by others
References
Levitt, M. H. Spin Dynamics Basic of Nuclear Magnetic Resonance (Wiley, 2008).
Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers Vol. 478 (Academic, 1994).
Facelli, J. C. Chemical shift tensors: theory and application to molecular structural problems. Prog. Nucl. Magn. Reson. Spectrosc. 58, 176–201 (2011).
Keeler, J. Understanding NMR Spectroscopy (Wiley, 2011).
Andrew, E. R., Bradbury, A. & Eades, R. G. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182, 1659–1659 (1958).
Schaefer, J. & Stejskal, E. O. C13 nuclear magnetic resonance of polymers spinning at magic angle. J. Am. Chem. Soc. 98, 1031–1032 (1976).
Duer, M. J. Introduction to Solid-State NMR Spectroscopy (Blackwell Science, 2004).
Hong, M. & Jakes, K. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigation. J. Biomol. NMR 14, 71–74 (1999).
Tugarinov, V., Kanelis, V. & Kay, L. E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).
Kainosho, M. et al. Optimal isotope labelling for NMR protein structure determinations. Nature 440, 52–57 (2006).
Lu, J. et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154, 1257–1268 (2013). This paper describes the first structural determination of brain-derived Alzheimer disease Aβ fibrils using NMR spectroscopy and brain-seeded fibrils.
Ashbrook, S. E. & Smith, M. E. Solid state O-17 NMR — an introduction to the background principles and applications to inorganic materials. Chem. Soc. Rev. 35, 718–735 (2006).
Pines, A., Gibby, M. G. & Waugh, J. S. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973).
Herzfeld, J. & Berger, A. E. Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 6021 (1980).
Bielecki, A., Kolbert, A. C. & Levitt, M. H. Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem. Phys. Lett. 155, 341–346 (1989).
Mote, K. R., Agarwal, V. & Madhu, P. K. Five decades of homonuclear dipolar decoupling in solid-state NMR: status and outlook. Prog. Nucl. Magn. Reson. Spectrosc. 97, 1–39 (2016).
Paruzzo, F. M. & Emsley, L. High-resolution 1H NMR of powdered solids by homonuclear dipolar decoupling. J. Magn. Reson. 309, 106598 (2019).
Perras, F. A., Goh, T. W., Wang, L. L., Huang, W. & Pruski, M. Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. Solid State Nucl. Magn. Reson. 98, 12–18 (2019).
Barbet-Massin, E. et al. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J. Am. Chem. Soc. 136, 12489–12497 (2014).
Takegoshi, K., Nakamura, S. & Terao, T. C-13–H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).
Bax, A., Freeman, R. & Kempsell, S. P. Natural-abundance 13C–13C coupling observed via double-quantum coherence. J. Am. Chem. Soc. 102, 4849–4851 (1980).
Lesage, A., Bardet, M. & Emsley, L. Through-bond carbon–carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 121, 10987–10993 (1999).
Harris, R. K. Applications of solid-state NMR to pharmaceutical polymorphism and related matters. J. Pharm. Pharmacol. 59, 225–239 (2007).
King, I. J., Fayon, F., Massiot, D., Harris, R. K. & Evans, J. S. O. A space group assignment of ZrP2O7 obtained by P-31 solid state NMR. Chem. Commun. 18, 1766–1767 (2001).
Cadars, S., Lesage, A. & Emsley, L. Chemical shift correlations in disordered solids. J. Am. Chem. Soc. 127, 4466–4476 (2005).
De Paëpe, G. Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63, 661–684 (2012).
Terao, T., Miura, H. & Saika, A. I–S dipolar switching-angle spinning 2D NMR (SLF). J. Chem. Phys. 85, 3816–3826 (1986).
Mueller, K. T. et al. Dynamic-angle spinning of quadrupolar nuclei. J. Magn. Reson. 86, 470 (1990).
Apperley, D. C., Harris, R. K. & Hodgkinson, P. Solid-state NMR: Basic Principles and Practice (Momentum, 2012).
Ashbrook, S. E. & Sneddon, S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J. Am. Chem. Soc. 136, 15440–15456 (2014).
Gan, Z., Gor’kov, P., Cross, T. A., Samoson, A. & Massiot, D. Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields. J. Am. Chem. Soc. 124, 5634–5635 (2002).
Frydman, L. & Harwood, J. S. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR. J. Am. Chem. Soc. 117, 5367–5368 (1995). This paper revolutionizes the structural study of quadrupolar nuclei in many materials by removing the line broadening that affects the solid-state NMR spectra.
Schurko, R. W. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46, 1985–1995 (2013).
Spiess, H. W. 2H NMR for studying mobility and orientation in polymers. Adv. Polym. Sci. 66, 23–56 (1985).
Davis, J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim. Biophys. Acta 737, 117–171 (1983).
Petrache, H. I., Dodd, S. W. & Brown, M. F. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by H-2 NMR spectroscopy. Biophys. J. 79, 3172–3192 (2000).
Kamp, F. et al. Bexarotene binds to the amyloid precursor protein transmembrane domain, alters its α-helical conformation, and inhibits γ-secretase nonselectively in liposomes. ACS Chem. Neurosci. 9, 1702–1713 (2018).
Hologne, M., Faelber, K., Diehl, A. & Reif, B. Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J. Am. Chem. Soc. 127, 11208–11209 (2005).
Shi, X. Y. & Rienstra, C. M. Site-specific internal motions in GB1 protein microcrystals revealed by 3D 2H–13C–13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 138, 4105–4119 (2016).
Gelenter, M. D., Wang, T., Liao, S. Y., O’Neill, H. & Hong, M. 2H–13C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates. J. Biomol. NMR 68, 257–270 (2017).
Comellas, G. & Rienstra, C. M. Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu. Rev. Biophys. 42, 515–536 (2013).
Chevelkov, V., Rehbein, K., Diehl, A. & Reif, B. Ultra-high resolution in proton solid-state NMR at high levels of deuteration. Angew. Chem. Int. Ed. 45, 3878–3881 (2006). This paper reports the first demonstration of high-resolution 1H correlation solid-state NMR spectra.
Penzel, S. et al. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods. J. Biomol. NMR 63, 165–186 (2015).
Andreas, L. B. et al. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc. Natl Acad. Sci. USA 113, 9187–9192 (2016). This paper describes the first de novo structure obtained from 1H-detected solid-state NMR experiments.
Xiang, S. et al. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments. J. Biomol. NMR 62, 303–311 (2015).
Schanda, P., Huber, M., Verel, R., Ernst, M. & Meier, B. H. Direct detection of 3hJ(NC′) hydrogen-bond scalar couplings in proteins by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 48, 9322–9325 (2009).
Hiller, S., Wasmer, C., Wider, G. & Wuthrich, K. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J. Am. Chem. Soc. 129, 10823–10828 (2007).
Mobli, M. & Hoch, J. C. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog. Nucl. Magn. Reson. Spectrosc. 83, 21–41 (2014).
Paramasivam, S. et al. Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J. Phys. Chem. B 116, 7416–7427 (2012).
Orton, H. W. et al. Protein NMR resonance assignment without spectral analysis: 5D solid-state automated projection spectroscopY (SO-APSY). Angew. Chem. Int. Ed. 59, 2380–2384 (2020).
Schmidt, E. & Guntert, P. A new algorithm for reliable and general NMR resonance assignment. J. Am. Chem. Soc. 134, 12817–12829 (2012).
Tycko, R. On the problem of resonance assignments in solid state NMR of uniformly N-15, C-13-labeled proteins. J. Magn. Reson. 253, 166–172 (2015).
Stanek, J. et al. Automated backbone NMR resonance assignment of large proteins using redundant linking from a single simultaneous acquisition. J. Am. Chem. Soc. 142, 5793–5799 (2020).
Hong, M. & Schmidt-Rohr, K. Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc. Chem. Res. 46, 2154–2163 (2013).
Castellani, F. et al. Structure of a protein determined by solid-state magic-angle spinning NMR spectroscopy. Nature 420, 98–102 (2002). This report demonstrates the first complete protein structure determined by solid-state NMR spectroscopy.
Grommek, A., Meier, B. H. & Ernst, M. Distance information from proton-driven spin diffusion under MAS. Chem. Phys. Lett. 427, 404–409 (2006).
Linser, R., Bardiaux, B., Higman, V., Fink, U. & Reif, B. Structure calculation from unambiguous long-range amide and methyl 1H–1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J. Am. Chem. Soc. 133, 5905–5912 (2011).
Roos, M., Wang, T., Shcherbakov, A. A. & Hong, M. Fast magic-angle-spinning 19F spin exchange NMR for determining nanometer 19F–19F distances in proteins and phamaceutical compounds. J. Phys. Chem. B 122, 2900–2911 (2018).
Gullion, T. & Schaefer, J. Rotational echo double resonance NMR. J. Magn. Reson. 81, 196–200 (1989).
Cegelski, L. REDOR NMR for drug discovery. Bioorg. Med. Chem. Lett. 23, 5767–5775 (2013).
Jaroniec, C. P., Filip, C. & Griffin, R. G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon–nitrogen distances in uniformly 13C, 15N-labeled solids. J. Am. Chem. Soc. 124, 10728–10742 (2002).
Tang, M., Waring, A. J. & Hong, M. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J. Am. Chem. Soc. 129, 11438–11446 (2007).
Yang, H. et al. REDOR NMR reveals multiple conformers for a protein kinase C ligand in a membrane environment. ACS Cent. Sci. 4, 89–96 (2018).
Elkins, M. R. et al. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl Acad. Sci. USA 114, 12946–12951 (2017).
Brus, J. et al. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Angew. Chem. Int. Ed. Engl. 54, 541–545 (2015).
Peng, L., Liu, Y., Kim, N., Readman, J. E. & Grey, C. P. Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat. Mater. 4, 216–219 (2005).
Shcherbakov, A. A. & Hong, M. Rapid measurement of long-range distances in proteins by multidimensional 13C–19F REDOR NMR under fast magic-angle spinning. J. Biomol. NMR 71, 31–43 (2018).
Shcherbakov, A. A., Mandala, V. S. & Hong, M. High-sensitivity detection of nanometer 1H–19F distances for protein structure determination by 1H-detected fast MAS NMR. J. Phys. Chem. B 123, 4387–4391 (2019).
Wang, M. et al. Fast magic angle spinning 19F NMR of HIV-1 capsid protein assemblies. Angew. Chem. Int. Ed. 57, 16375–16379 (2018).
Ruiz-Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19F solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645–1654 (2020).
Gilchrist, M. L. Jr et al. Measurement of interfluorine distances in solids. J. Magn. Reson. 152, 1–6 (2001).
Steigel, A. & Spiess, H. W. Dynamic NMR Spectroscopy (Springer Verlag, 1978).
Geahigan, K. B., Meints, G. A., Hatcher, M. E., Orban, J. & Drobny, G. P. The dynamic impact of CpG methylation in DNA. Biochemistry 39, 4939–4946 (2000).
Copié, V. et al. Deuterium solid-state nuclear magnetic resonance studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: evidence for a 6-s-trans chromophore in the protein. Biochemistry 33, 3280–3286 (1994).
Munowitz, M. G., Griffin, R. G., Bodenhausen, G. & Huang, T. H. Two-dimensional rotational spin-echo NMR in solids: correlation of chemical shift and dipolar interactions. J. Am. Chem. Soc. 103, 2529–2533 (1981).
Hong, M. et al. Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J. Magn. Reson. 129, 85–92 (1997).
deAzevedo, E. R. et al. Intermediate motions as studied by solid-state separated local field NMR experiments. J. Chem. Phys. 128, 104505 (2008).
Hohwy, M., Jaroniec, C. P., Reif, B., Rienstra, C. M. & Griffin, R. G. Determination of local structure and relaxation properties in solid-state NMR: accurate measurement of amide N–H bond lengths and H–N–H bond angles. J. Am. Chem. Soc. 122, 3218–3219 (2000).
Hou, G. J., Lu, X. Y., Vega, A. J. & Polenova, T. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy. J. Chem. Phys. 141, e104202 (2014).
van Rossum, B.-J., de Groot, C. P., Ladizhansky, V., Vega, S. & de Groot, H. J. M. A method for measuring heteronuclear (1H–13C) distances in high speed MAS NMR. J. Am. Chem. Soc. 122, 3465–3472 (2000).
Schanda, P., Huber, M., Boisbouvier, J., Meier, B. H. & Ernst, M. Solid-state NMR measurements of asymmetric dipolar couplings provide insight into protein side-chain motion. Angew. Chem. Int. Ed. 50, 11005–11009 (2011).
Asami, S. & Reif, B. Comparative study of REDOR and CPPI derived order parameters by 1H-detected MAS NMR and MD simulations. J. Phys. Chem. B 121, 8719–8730 (2017).
Xue, K., Mühlbauer, M., Mamone, S., Sarkar, R. & Reif, B. Accurate determination of 1H–15N dipolar couplings using inaccurate settings of the magic angle in solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 58, 4286–4290 (2019).
Paluch, P. et al. Theoretical study of CP-VC: a simple, robust and accurate MAS NMR method for analysis of dipolar C–H interactions under rotation speeds faster than ca. 60 kHz. J. Magn. Res. 252, 67–77 (2015).
deAzevedo, E. R., Bonagamba, T. J., Hu, W. & Schmidt-Rohr, K. Centerband-only detection of exchange: efficient analysis of dynamics in solids by NMR. J. Am. Chem. Soc. 121, 8411–8412 (1999).
Krushelnitsky, A. et al. Direct observation of millisecond to second motions in proteins by dipolar CODEX NMR spectroscopy. J. Am. Chem. Soc. 131, 12097–12099 (2009).
Giraud, N. et al. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. J. Am. Chem. Soc. 127, 18190–18201 (2005).
Chevelkov, V., Diehl, A. & Reif, B. Measurement of 15N-T1 relaxation rates in a perdeuterated protein by MAS solid-state NMR spectroscopy. J. Chem. Phys. 128, 052316 (2008).
Lewandowski, J. R., Sass, H. J., Grzesiek, S., Blackledge, M. & Emsley, L. Site-specific measurement of slow motions in proteins. J. Am. Chem. Soc. 133, 16762–16765 (2011).
Rovo, P. & Linser, R. Microsecond timescale protein dynamics: a combined solid-state NMR approach. ChemPhysChem 19, 34–39 (2018).
Marion, D., Gauto, D. F., Ayala, I., Giandoreggio-Barranco, K. & Schanda, P. Microsecond protein dynamics from combined Bloch–McConnell and near-rotary-resonance R1p relaxation-dispersion MAS NMR. ChemPhysChem 20, 276–284 (2019).
Giraud, N., Blackledge, M., Böckmann, A. & Emsley, L. The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times. J. Magn. Reson. 184, 51–61 (2007).
Phan, V., Fry, E. A. & Zilm, K. W. Accounting for the temperature dependence of C-13 spin-lattice relaxation of methyl groups in the glycyl-alanyl-leucine model system under MAS with spin diffusion. J. Biomol. NMR 73, 411–421 (2019).
Kirchhain, H. & van Wullen, L. Solid state NMR at very high temperatures. Prog. Nucl. Magn. Reson. Spectrosc. 114, 71–85 (2019).
Meier, T. et al. NMR at pressures up to 90 GPa. J. Magn. Res. 292, 44–47 (2018).
Chamas, A. et al. High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magn. Reson. Imaging 56, 37–44 (2019).
Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).
Carver, T. R. & Slichter, C. P. Polarization of nuclear spins in metals. Phys. Rev. 92, 212–213 (1953).
Ni, Q. Z. et al. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46, 1933–1941 (2013).
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M. & Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103, 120–195 (2017).
Bajaj, V. S. et al. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source. J. Magn. Reson. 160, 85–90 (2003).
Rossini, A. J. et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013).
Lesage, A. et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 132, 15459–15461 (2010). This is the first paper introducing impregnation DNP and showing how it can enable the study of surface structures of materials, using nanoporous silica material as an example.
Sauvée, C. et al. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int. Ed. Engl. 52, 10858–10861 (2013).
Zagdoun, A. et al. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J. Am. Chem. Soc. 135, 12790–12797 (2013).
Bertini, I., Luchinat, C., Parigi, G. & Ravera, E. NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models 2nd edn (Elsevier Science BV, 2017).
Pell, A. J., Pintacuda, G. & Grey, C. P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2019).
Solomon, I. Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955).
Buffy, J. J. et al. Solid-state NMR investigation of the depth of insertion of protegin-1 in lipid bilayers using paramagnetic Mn2+. Biophys. J. 85, 2363–2373 (2003).
Parthasarathy, S. et al. Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s β by solid-state NMR spectroscopy. J. Am. Chem. Soc. 133, 3390–3400 (2011).
Nadaud, P. S., Helmus, J. J., Sengupta, I. & Jaroniec, C. P. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. J. Am. Chem. Soc. 132, 9561–9563 (2010).
Öster, C. et al. Characterization of protein–protein interfaces in large complexes by solid-state NMR solvent paramagnetic relaxation enhancements. J. Am. Chem. Soc. 139, 12165–12174 (2017).
Knight, M. J. et al. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc. Natl Acad. Sci. USA 109, 11095–11100 (2012).
Wickramasinghe, N. P. et al. Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries. Nat. Methods 6, 215–218 (2009).
Wu, X. L. & Zilm, K. W. Complete spectral editing in CPMAS NMR. J. Magn. Reson. A 102, 205–213 (1993).
Schmidt-Rohr, K. & Mao, J. D. Efficient CH-group selection and identification in C-13 solid-state NMR by dipolar DEPT and H-1 chemical-shift filtering. J. Am. Chem. Soc. 124, 13938–13948 (2002).
Mao, J. D. & Schmidt-Rohr, K. Methylene spectral editing in solid-state C-13 NMR by three-spin coherence selection. J. Magn. Reson. 176, 1–6 (2005).
Rienstra, C. M., Hohwy, M., Hong, M. & Griffin, R. G. 2D and 3D 15N–13C–13C NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J. Am. Chem. Soc. 122, 10979–10990 (2000).
Baldus, M., Petkova, A. T., Herzfeld, J. & Griffin, R. G. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 95, 1197–1207 (1998).
Pauli, J., Baldus, M., Van Rossum, B.-J., De Groot, H. & Oschkinat, H. Backbone and side-chain 13C and 15N signal assignments of the α-spectrin SH3 domain by magic-angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2, 272–281 (2001).
De Paëpe, G., Lewandowski, J. R., Loquet, A., Böckmann, A. & Griffin, R. G. Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 245101 (2008).
Gelenter, M. D. & Hong, M. Efficient 15N–13C polarization transfer by third-spin-assisted pulsed cross-polarization magic-angle-spinning NMR for protein structure determination. J. Phys. Chem. B 122, 8367–8379 (2018).
Ishii, Y. C-13–C-13 dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J. Chem. Phys. 114, 8473–8483 (2001).
Jaroniec, C. P., Tounge, B. A., Rienstra, C. M., Herzfeld, J. & Griffin, R. G. Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J. Magn. Reson. 146, 132–139 (2000).
Su, Y., Hu, F. & Hong, M. Paramagnetic Cu(II) for probing membrane protein structure and function: inhibition mechanism of the influenza M2 proton channel. J. Am. Chem. Soc. 134, 8693–8702 (2012).
Theint, T. et al. Structural studies of amyloid fibrils by paramagnetic solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 140, 13161–13166 (2018).
Su, Y., Mani, R. & Hong, M. Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J. Am. Chem. Soc. 130, 8856–8864 (2008).
Mandala, V. S., Loftis, A. R., Shcherbakov, A. A., Pentelute, B. L. & Hong, M. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat. Struc. Mol. Biol. 27, 160–167 (2020).
Das, B. B. et al. Structure determination of a membrane protein in proteoliposomes. J. Am. Chem. Soc. 134, 2047–2056 (2012).
Phyo, P. et al. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol. 175, 1593–1607 (2017).
Williams, J. K., Zhang, Y., Schmidt-Rohr, K. & Hong, M. pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR. Biophys. J. 104, 1698–1708 (2013).
Chevelkov, V., Fink, U. & Reif, B. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. J. Am. Chem. Soc. 131, 14018–14022 (2009).
Schanda, P., Meier, B. H. & Ernst, M. Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132, 15957–15967 (2010).
Ma, P. X. et al. Observing the overall rocking motion of a protein in a crystal. Nat. Commun. 6, e8361 (2015).
Lewandowski, J. R., Sein, J., Blackledge, M. & Emsley, L. Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins. J. Am. Chem. Soc. 132, 1246-+ (2010).
Lewandowski, J. R., Halse, M. E., Blackledge, M. & Emsley, L. Protein dynamics. Direct observation of hierarchical protein dynamics. Science 348, 578–581 (2015). This study provides a quantitative analysis of the coupling of protein and solvent dynamics using relaxation NMR spectroscopy.
Smith, A. A., Ernst, M., Riniker, S. & Meier, B. H. Localized and collective motions in HET-s(218–289) fibrils from combined NMR relaxation and MD simulation. Angew. Chem. Int. Ed. 58, 9383–9388 (2019).
Shannon, M. D. et al. Conformational dynamics in the core of human Y145Stop prion protein amyloid probed by relaxation dispersion NMR. ChemPhysChem 20, 311–317 (2019).
Gauto, D. F. et al. Aromatic ring dynamics, thermal activation, and transient conformations of a 468 kDa enzyme by specific H-1–C-13 labeling and fast magic-angle spinning NMR. J. Am. Chem. Soc. 141, 11183–11195 (2019).
Wasylishen, R. E., Ashbrook, S. E. & Wimperis, S. NMR of Quadrupolar Nuclei in Solid Materials (Wiley, 2012).
Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).
Bak, M., Rasmussen, J. T. & Nielsen, N. C. SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Res. 147, 296–330 (2000).
Ashbrook, S. E., Berry, A. J. & Wimperis, S. O-17 multiple-quantum MAS NMR study of pyroxenes. J. Phys. Chem. B 106, 773–778 (2002).
Frydman, L. & Harwood, J. S. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR. J. Am. Chem. Soc. 117, 5367–5368 (1995).
Goldbourt, A. & Madhu, P. K. Multiple-quantum magic-angle spinning: high-resolution solid-state NMR of half-integer spin quadrupolar nuclei. Annu. Rep. NMR Spec. 54, 81–153 (2005).
Moran, R. F., Dawson, D. M. & Ashbrook, S. E. Exploiting NMR spectroscopy for the study of disorder in solids. Int. Rev. Phys. Chem. 36, 39–115 (2017).
Le Caer, G., Bureau, B. & Massiot, D. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of Ga-71 in chalcogenide glasses. J. Phys. Condens. Matter 22, 065402 (2010).
Trease, N. M., Clark, T. M., Grandinetti, P. J., Stebbins, J. F. & Sen, S. Bond length-bond angle correlation in densified silica-results from O-17 NMR spectroscopy. J. Chem. Phys. 146, 184505 (2017).
Ashbrook, S. E. & McKay, D. Combining solid-state NMR spectroscopy with first-principles calculations — a guide to NMR crystallography. Chem. Commun. 52, 7186–7204 (2016). This review describes how to use computational prediction of NMR interactions and NMR parameters alongside experiments to help interpret and assign complex spectral signals, thereby gaining more detailed structural insight.
Bonhomme, C. et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist’s point of view. Chem. Rev. 112, 5733–5779 (2012).
Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001). This paper establishes the framework for accurate calculation of chemical shifts in periodic solids.
Caulkins, B. G. et al. NMR crystallography of a carbanionic intermediate in tryptophan synthase: chemical structure, tautomerization, and reaction specificity. J. Am. Chem. Soc. 138, 15214–15226 (2016).
Baias, M. et al. De novo determination of the crystal structure of a large drug molecule by crystal structure prediction-based powder NMR crystallography. J. Am. Chem. Soc. 135, 17501–17507 (2013).
Cadars, S. et al. Long- and short-range constraints for the structure determination of layered silicates with stacking disorder. Chem. Mater. 26, 6994–7008 (2014).
Charpentier, T., Menziani, M. C. & Pedone, A. Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv. 3, 10550–10578 (2013).
Cady, S. D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692 (2010). This study demonstrates the first determination of the structure and dynamics of a pharmaceutical drug bound to a membrane protein.
Sharma, M. et al. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330, 509–512 (2010).
Lange, A. et al. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959–962 (2006). This study shows how high-affinity binding of the scorpion toxin to a chimeric K+ channel is associated with significant structural rearrangements in both molecules, which explains the high specificity of toxin–K+ channel interactions.
Wylie, B. J., Bhate, M. P. & McDermott, A. E. Transmembrane allosteric coupling of the gates in a potassium channel. Proc. Natl Acad. Sci. USA 111, 185–190 (2014).
Öster, C. et al. The conduction pathway of potassium channels is water free under physiological conditions. Sci. Adv. 5, eaaw6756 (2019).
Gayen, A., Leninger, M. & Traaseth, N. J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141–145 (2016).
Lehnert, E. et al. Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR spectroscopy. J. Am. Chem. Soc. 138, 13967–13974 (2016).
Lalli, D. et al. Proton-based structural analysis of a heptahelical transmembrane protein in lipid bilayers. J. Am. Chem. Soc. 139, 13006–13012 (2017).
Wang, S. L. et al. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10, 1007-–1012 (2013).
Retel, J. S. et al. Structure of outer membrane protein G in lipid bilayers. Nat. Commun. 8, 2073 (2017).
Medeiros-Silva, J. et al. High-resolution NMR studies of antibiotics in cellular membranes. Nat. Commun. 9, 3963 (2018).
Amani, R. et al. Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc. Natl Acad. Sci. USA 117, 2938–2947 (2020).
Mandala, V. S., Gelenter, M. D. & Hong, M. Transport-relevant protein conformational dynamics and water dynamics on multiple time scales in an Archetypal proton channel: insights from solid-state NMR. J. Am. Chem. Soc. 140, 1514–1524 (2018).
Spadaccini, R., Kaur, H., Becker-Baldus, J. & Glaubitz, C. The effect of drug binding on specific sites in transmembrane helices 4 and 6 of the ABC exporter MsbA studied by DNP-enhanced solid-state NMR. Biochim. Biophys. Acta 1860, 833–840 (2018).
Maciejko, J., Kaur, J., Becker-Baldus, J. & Glaubitz, C. Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR. Proc. Natl Acad. Sci. USA 116, 8342–8349 (2019).
Becker-Baldus, J. et al. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc. Natl Acad. Sci. USA 112, 9896–9901 (2015).
Ni, Q. Z. et al. Primary transfer step in the light-driven ion pump bacteriorhodopsin: an irreversible U-turn revealed by dynamic nuclear polarization-enhanced magic angle spinning NMR. J. Am. Chem. Soc. 140, 4085–4091 (2018).
Good, D., Pham, C., Jagas, J., Lewandowski, J. R. & Ladizhansky, V. Solid-state NMR provides evidence for small-amplitude slow domain motions in a multispanning transmembrane α-helical protein. J. Am. Chem. Soc. 139, 9246–9258 (2017).
Tycko, R. Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86, 632–645 (2015).
Xiao, Y. L. et al. A β 1–42 fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22, 499–505 (2015).
Colvin, M. T. et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 138, 9663–9674 (2016). This paper determines an atomic resolution structure of a monomorphic form of Aβ42 amyloid fibrils, which is essential to the aetiology of Alzheimer disease.
Wälti, M. A. et al. Atomic-resolution structure of a disease-relevant Aβ1–42 amyloid fibril. Proc. Natl Acad. Sci. USA 113, E4976–E4984 (2016).
Bousset, L. et al. Structural and functional characterization of two α-synuclein strains. Nat. Commun. 4, 2575 (2013).
Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).
Fitzpatrick, A. W. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).
Iadanza, M. G. et al. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat. Commun. 9, 1–10 (2018).
Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627 (2017).
Dregni, A. J. et al. In vitro 0N4R tau fibrils contain a monomorphic b-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proc. Natl Acad. Sci. USA 116, 16357–16366 (2019).
Piehl, D. W. et al. Immunoglobulin light chains form an extensive and highly ordered fibril involving the N- and C-termini. ACS Omega 2, 712–720 (2017).
Hora, M. et al. Antibody light chain fibrils are similar to oligomeric precursors. PLoS ONE 12, e0181799 (2017).
Prade, E. et al. Structural mechanism of the interaction of Alzheimer’s disease Aβ fibrils with the non-steroidal anti-inflammatory drug (NSAID) sulindac sulfide. J. Biol. Chem. 290, 28737–28745 (2015).
Lopez del Amo, J.-M. et al. Structural properties of EGCG induced, non-toxic Alzheimer’s disease Aβ oligomers. J. Mol. Biol. 421, 517–524 (2012).
Chimon, S. et al. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007).
Qiang, W., Yau, W. M. & Schulte, J. Fibrillation of β amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption. Biochim. Biophys. Acta 1848, 266–276 (2015).
Fusco, G. et al. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 5, 3827 (2014).
Wang, T., Jo, H., DeGrado, W. F. & Hong, M. Water distribution, dynamics, and interactions with Alzheimer’s β-amyloid fibrils investigated by solid-state NMR. J. Am. Chem. Soc. 139, 6242–6252 (2017).
Murray, D. T. & Tycko, R. Side chain hydrogen-bonding interactions within amyloid-like fibrils formed by the low-complexity domain of FUS: evidence from solid state nuclear magnetic resonance spectroscopy. Biochemistry 59, 364–378 (2020).
Dregni, A. J., Duan, P. & Hong, M. Hydration and dynamics of full-length tau amyloid fibrils investigated by solid-state nuclear magnetic resonance. Biochemistry 59, 2237–2248 (2020).
Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).
Gelenter, M. D. et al. The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations. Nat. Struct. Mol. Biol. 26, 592–598 (2019).
Nespovitaya, N. et al. Dynamic assembly and disassembly of functional β-endorphin amyloid fibrils. J. Am. Chem. Soc. 138, 846–856 (2016).
Bertini, I. et al. Solid-state NMR of proteins sedimented by ultracentrifugation. Proc. Natl Acad. Sci. USA 108, 10396–10399 (2011).
Yan, S. et al. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA 112, 14611–14616 (2015).
Lu, M. et al. Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc. Natl Acad. Sci. USA 112, 14617–14622 (2015).
Mainz, A. et al. NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angew. Chem. Int. Ed. 52, 8746–8751 (2013).
Kurauskas, V. et al. Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit. Chem. Commun. 52, 9558–9561 (2016).
Mainz, A. et al. The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat. Struct. Mol. Biol. 22, 898–905 (2015).
Felix, J. et al. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Sci. Adv. 5, eaaw3818 (2019).
Knight, M. J. et al. Rapid measurement of pseudocontact shifts in metalloproteins by proton-detected solid-state NMR spectroscopy. J. Am. Chem. Soc. 134, 14730–14733 (2012).
Bertini, I. et al. High-resolution solid-state NMR structure of a 17.6 kDa protein. J. Am. Chem. Soc. 132, 1032–1040 (2010).
Damman, R. et al. Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nat. Commun. 10, 4536 (2019).
Bertarello, A. et al. Picometer resolution structure of the coordination sphere in the metal-binding site in a metalloprotein by NMR. J. Am. Chem. Soc. 142, 16757–16765 (2020).
Wang, T., Phyo, P. & Hong, M. Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl. Magn. Reson. 78, 56–63 (2016).
Takahashi, H. et al. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J. Am. Chem. Soc. 135, 5105–5110 (2013).
Wang, T. & Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Botany 67, 503–514 (2016).
Dick-Pérez, M. et al. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1000 (2011).
Wang, T., Yang, H., Kubicki, J. D. & Hong, M. Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17, 2210–2222 (2016).
Simmons, T. J. et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7, 13902 (2016).
Phyo, P., Wang, T., Yang, Y., O’Neill, H. & Hong, M. Direct determination of hydroxymethyl conformations of plant cell wall cellulose using 1H polarization transfer solid-state NMR. Biomacromolecules 19, 1485–1497 (2018).
Wang, T. et al. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc. Natl Acad. Sci. USA 110, 16444–16449 (2013).
Kang, X. et al. Lignin–polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 10, 347 (2019). This solid-state NMR study provides the first comprehensive molecular-level structural insights into lignin–polysaccharide interactions in plant secondary cell walls.
Kang, X. et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9, 2747 (2018).
Bougault, C., Ayala, I., Vollmer, W., Simorre, J. P. & Schanda, P. Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. J. Struct. Biol. 206, 66–72 (2019).
McCrate, O. A., Zhou, X., Reichhardt, C. & Cegelski, L. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J. Mol. Biol. 425, 4286–4294 (2013).
Thongsomboon, W. et al. Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359, 334–338 (2018).
Rossini, A. J. et al. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J. Am. Chem. Soc. 134, 16899–16908 (2012).
Hartman, J. D., Day, G. M. & Beran, G. J. Enhanced NMR discrimination of pharmaceutically relevant molecular crystal forms through fragment-based ab initio chemical shift predictions. Cryst. Growth Des. 16, 6479–6493 (2016).
Lu, X. et al. Molecular interactions in posaconazole amorphous solid dispersions from two-dimensional solid-state NMR spectroscopy. Mol. Pharm. 16, 2579–2589 (2019).
Nilsson Lill, S. O. et al. Elucidating an amorphous form stabilization mechanism for tenapanor hydrochloride: crystal structure analysis using X-ray diffraction, NMR crystallography, and molecular modeling. Mol. Pharm. 15, 1476–1487 (2018).
Leclaire, J. et al. Structure elucidation of a complex CO2-based organic framework material by NMR crystallography. Chem. Sci. 7, 4379–4390 (2016).
Hofstetter, A. et al. Rapid structure determination of molecular solids using chemical shifts directed by unambiguous prior constraints. J. Am. Chem. Soc. 141, 16624–16634 (2019).
Engel, E. A. et al. A Bayesian approach to NMR crystal structure determination. Phys. Chem. Chem. Phys. 21, 23385–23400 (2019).
Ni, Q. Z. et al. In situ characterization of pharmaceutical formulations by dynamic nuclear polarization enhanced MAS NMR. J. Phys. Chem. B 121, 8132–8141 (2017).
Walder, B. J. et al. One- and two-dimensional high-resolution NMR from flat surfaces. ACS Cent. Sci. 5, 515–523 (2019).
Webber, A. L. et al. Identifying guanosine self assembly at natural isotopic abundance by high-resolution H-1 and C-13 solid-state NMR spectroscopy. J. Am. Chem. Soc. 133, 19777–19795 (2011).
Mann, S. K., Pham, T. N., McQueen, L. L., Lewandowski, J. R. & Brown, S. P. Revealing intermolecular hydrogen bonding structure and dynamics in a deep eutectic pharmaceutical by magic-angle spinning NMR spectroscopy. Mol. Pharm. 17, 622–631 (2020).
Jiang, X. et al. Thermally activated transient dipoles and rotational dynamics of hydrogen-bonded and charge-transferred diazabicyclo 2.2.2 octane molecular rotors. J. Am. Chem. Soc. 141, 16802–16809 (2019).
Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998).
Viger-Gravel, J. et al. Structure of lipid nanoparticles containing siRNA or mRNA by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).
Pinon, A. C., Skantze, U., Viger-Gravel, J., Schantz, S. & Emsley, L. Core-shell structure of organic crystalline nanoparticles determined by relayed dynamic nuclear polarization NMR. J. Phys. Chem. A 122, 8802–8807 (2018).
Johnson, R. L. & Schmidt-Rohr, K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson. 239, 44–49 (2014).
Mao, J. D., Cao, X. Y., Olk, D. C., Chu, W. Y. & Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spect. 100, 17–51 (2017).
Mao, J. D. et al. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ. Sci. Technol. 46, 9571–9576 (2012).
Duan, P. et al. The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR. J. Am. Chem. Soc. 140, 7658–7666 (2018).
Hu, Y. Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010). This study employs 13C chemical shifts and 13C–31P distance NMR spectroscopy experiments to show that the calcium phosphate surfaces in bone are studded with citrate molecules, which stabilize the apatite nanocrystals in bone.
Davies, E. et al. Citrate bridges between mineral platelets in bone. Proc. Natl Acad. Sci. USA 111, E1354–E1363 (2014).
Moran, R. F. et al. Ensemble-based modeling of the NMR spectra of solid solutions: cation disorder in Y2(Sn,Ti)2O7. J. Am. Chem. Soc. 141, 17838–17846 (2019).
Ashbrook, S. E. et al. New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy. Phys. Chem. Chem. Phys. 17, 9049–9059 (2015).
Valla, M. et al. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations. J. Am. Chem. Soc. 137, 10710–10719 (2015).
Playford, H. Y. et al. Characterization of structural disorder in γ-Ga2O3. J. Phys. Chem. C 118, 16188–16198 (2014).
Jaegers, N. R., Mueller, K. T., Wang, Y. & Hu, J. Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc. Chem. Res. 53, 611–619 (2020).
Buannic, L., Blanc, F., Middlemiss, D. S. & Grey, C. P. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility. J. Am. Chem. Soc. 134, 14483–14498 (2012).
Alharbi, E. A. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019).
Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1 − xPbl3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017).
Soleilhavoup, A., Hampson, M. R., Clark, S. J., Evans, J. S. O. & Hodgkinson, P. Using O-17 solid-state NMR and first principles calculation to characterise structure and dynamics in inorganic framework materials. Magn. Reson. Chem. 45, S144–S155 (2007).
Pecher, O., Carretero-Gonzalez, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).
Liu, T. et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015). This paper describes how to overcome key challenges in engineering of lithium–air batteries and the use of 7Li and 1H NMR spectroscopy to determine the discharge products and elucidate the origin of protons in the formed LiOH.
Chen, J. et al. Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy. Nat. Commun. 10, 5420 (2019).
Stebbins, J. F. & Xue, X. Y. in Spectroscopic Methods in Mineralology and Materials Sciences Vol. 78 (eds. Henderson, G. S., Neuville, D. R. & Downs, R. T.) 605–653 (Mineralogical Society of America, 2014).
Griffin, J. M. & Ashbrook, S. E. Solid-state NMR of high-pressure silicates in the earth’s mantle. Annu. Rep. NMR Spec. 79, 241–332 (2013).
Langner, R., Fechtelkord, M., Garcia, A., Palin, E. J. & Lopez-Solano, J. Aluminum ordering and clustering in Al-rich synthetic phlogopite: {H-1}→Si-29 CPMAS HETCOR spectroscopy and atomistic calculations. Am. Mineral. 97, 341–352 (2012).
Florian, P., Veron, E., Green, T. F. G., Yates, J. R. & Massiot, D. Elucidation of the Al/Si ordering in gehlenite Ca2Al2SiO7 by combined Si-29 and Al-27 NMR spectroscopy/quantum chemical calculations. Chem. Mater. 24, 4068–4079 (2012).
Palke, A. C., Stebbins, J. F., Geiger, C. A. & Tippelt, G. Cation order–disorder in Fe-bearing pyrope and grossular garnets: a Al-27 and Si-29 MAS NMR and Fe-57 Mossbauer spectroscopy study. Am. Mineral. 100, 536–547 (2015).
Gan, Z. H. Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc. 122, 3242–3243 (2000).
Ashbrook, S. E. & Wimperis, S. High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectrosc. 45, 53–108 (2004).
McKay, D. et al. A picture of disorder in hydrous wadsleyite — under the combined microscope of solid-state NMR spectroscopy and Ab initio random structure searching. J. Am. Chem. Soc. 141, 3024–3036 (2019).
Griffin, J. M., Berry, A. J., Frost, D. J., Wimperis, S. & Ashbrook, S. E. Water in the earth’s mantle: a solid-state NMR study of hydrous wadsleyite. Chem. Sci. 4, 1523–1538 (2013).
Ashbrook, S. E., Dawson, D. M. & Seymour, V. R. Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. Phys. Chem. Chem. Phys. 16, 8223–8242 (2014).
Pugh, S. M., Wright, P. A., Law, D. J., Thompson, N. & Ashbrook, S. E. Facile, room-temperature O-17 enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 900–906 (2020).
Bignami, G. P. M. et al. Synthesis, isotopic enrichment, and solid-state NMR characterization of zeolites derived from the assembly, disassembly, organization, reassembly process. J. Am. Chem. Soc. 139, 5140–5148 (2017).
Nagashima, H. et al. Recent developments in NMR studies of aluminophosphates. Annu. Rep. NMR Spectrosc. 94, 113–185 (2018).
Dawson, D. M. et al. A multinuclear NMR study of six forms of AlPO-34: structure and motional broadening. J. Phys. Chem. C 121, 1781–1793 (2017).
Lucier, B. E. G., Chen, S. S. & Huang, Y. N. Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018).
Witherspoon, V. J., Xu, J. & Reimer, J. A. Solid-state NMR investigations of carbon dioxide gas in metal–organic frameworks: insights into molecular motion and adsorptive behavior. Chem. Rev. 118, 10033–10048 (2018).
Kong, X. Q. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013). This paper shows how solid-state NMR combined with molecular simulations can map the spatial distributions of linkers in multivariate metal–organic framework materials as random, well-mixed or clustered.
Bonhomme, C., Gervais, C. & Laurencin, D. Recent NMR developments applied to organic–inorganic materials. Prog. Nucl. Magn. Reson. Spectrosc. 77, 1–48 (2014).
Eden, M. 27Al NMR studies of aluminosilicate glasses. Annu. Rep. NMR Spectrosc. 86, 237–331 (2015).
Pustovgar, E. et al. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nat. Commun. 7, 10952 (2016).
Kunhi Mohamed, A. et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate. J. Am. Chem. Soc. 142, 11060–11071 (2020).
Gervais, C., Bonhomme, C. & Laurencin, D. Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. Solid State Nucl. Magn. Reson. 107, 101663 (2020).
Casabianca, L. B. Solid-state nuclear magnetic resonance studies of nanoparticles. Solid State Nucl. Magn. Reson. 107, 101664 (2020).
Al-Johani, H. et al. The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nat. Chem. 9, 890–895 (2017).
Berrettini, M. G., Braun, G., Hu, J. G. & Strouse, G. F. NMR analysis of surfaces and interfaces in 2-nm CdSe. J. Am. Chem. Soc. 126, 7063–7070 (2004).
Avenier, P. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 317, 1056–1060 (2007).
Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. Y. & Pruski, M. Studies of organically functionalized mesoporous silicas using heteronuclear solid-state correlation NMR spectroscopy under fast magic angle spinning. J. Am. Chem. Soc. 127, 7587–7593 (2005).
Wang, M. et al. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy. Sci. Adv. 1, e1400133 (2015).
Berruyer, P. et al. Three-dimensional structure determination of surface sites. J. Am. Chem. Soc. 139, 849–855 (2017).
Kobayashi, T., Perras, F. A., Slowing, I. I., Sadow, A. D. & Pruski, M. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catal. 5, 7055–7062 (2015).
Perras, F. A., Wang, Z. R., Naik, P., Slowing, I. I. & Pruski, M. Natural abundance O-17 DNP NMR provides precise O–H distances and insights into the bronsted acidity of heterogeneous catalysts. Angew. Chem. Int. Ed. 56, 9165–9169 (2017).
Tošner, Z. et al. Overcoming volume selectivity of dipolar recoupling in biological solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 57, 14514–14518 (2018).
Lewandowski, J. R., De Paëpe, G. & Griffin, R. G. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007).
Samoson, A. H-MAS. J. Magn. Res. 306, 167–172 (2019).
Wang, Z. et al. Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 109, 101685 (2020).
Tycko, R. & Hu, K. N. A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. J. Magn. Reson. 205, 304–314 (2010).
Fritzsching, K. J., Yang, Y., Schmidt-Rohr, K. & Hong, M. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. J. Biomol. NMR 56, 155–167 (2013).
Fritzsching, K. J., Hong, M. & Schmidt-Rohr, K. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria. J. Biomol. NMR 64, 115–130 (2016).
Yang, Y., Fritzsching, K. J. & Hong, M. Resonance assignment of disordered proteins using a multi-objective non-dominated sorting genetic algorithm. J. Biomol. NMR 57, 281–296 (2013).
Bartok, A. P. & Yates, J. R. Regularized SCAN functional. J. Chem. Phys. 150, 207101 (2019).
Hartman, J. D., Kudla, R. A., Day, G. M., Mueller, L. J. & Beran, G. J. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals. Phys. Chem. Chem. Phys. 18, 21686–21709 (2016).
Paruzzo, F. M. et al. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9, 4501 (2018).
Iwasa, Y. et al. A high-resolution 1.3-GHz/54-mm LTS/HTS NMR magnet. IEEE Trans. Appl. Supercond. 25, 1–5 (2015).
Gan, Z. et al. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet. J. Magn. Reson. 284, 125–136 (2017).
Xue, K. et al. Impact of magnetic field strength on resolution and sensitivity of proton resonances in biological solids. J. Phys. Chem. C. 124, 22631–22637 (2020).
Keeler, E. G. et al. 17O MAS NMR correlation spectroscopy at high magnetic fields. J. Am. Chem. Soc. 139, 17953–17963 (2017).
Chen, P. H. et al. Magic angle spinning spheres. Sci. Adv. 4, eaau1540 (2018).
Agarwal, V. et al. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew. Chem. Int. Ed. 53, 12253–12256 (2014).
Xue, K. et al. Magic angle spinning frequencies beyond 300 kHz are necessary to yield maximum sensitivity in selectively methyl protonated protein samples in solid state NMR. J. Phys. Chem. C 122, 16437–16442 (2018).
Gao, C. et al. Four millimeter spherical rotors spinning at 28 kHz with double-saddle coils for cross polarization NMR. J. Magn. Reson. 303, 1–6 (2019).
Berruyer, P. et al. Dynamic nuclear polarization enhancement of 200 at 21.15 T enabled by 65 kHz magic angle spinning. J. Phys. Chem. Lett. 11, 8386–8391 (2020).
Can, T. V., Walish, J. J., Swager, T. M. & Griffin, R. G. Time domain DNP with the NOVEL sequence. J. Chem. Phys. 143, 054201 (2015).
Jaudzems, K. et al. Dynamic nuclear polarization-enhanced biomolecular NMR spectroscopy at high magnetic field with fast magic-angle spinning. Angew. Chem. Int. Ed. 57, 7458–7462 (2018).
Tosner, Z. et al. Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. J. Magn. Res. 197, 120–134 (2009).
Concistrè, M., Johannessen, O. G., Carignani, E., Geppi, M. & Levitt, M. H. Magic-angle spinning NMR of cold samples. Acc. Chem. Res. 46, 1914–1922 (2013).
Jeon, J., Thurber, K. R., Ghirlando, R., Yau, W. M. & Tycko, R. Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly. Proc. Natl Acad. Sci. USA 116, 16717–16722 (2019).
Freedberg, D. I. & Selenko, P. Live cell NMR. Annu. Rev. Biophys. 43, 171–192 (2014).
Chow, W. Y. et al. NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization. Science 344, 742–746 (2014).
Narasimhan, S. et al. DNP-supported solid-state NMR spectroscopy of proteins inside mammalian cells. Angew. Chem. Int. Ed. 58, 12969–12973 (2019).
Jacso, T. et al. Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew. Chem. Int. Ed. 51, 432–435 (2012).
Kaplan, M. et al. EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167, 1241–1251 (2016).
Yusa, G., Muraki, K., Takashina, K., Hashimoto, K. & Hirayama, Y. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434, 1001–1005 (2005).
Meriles, C. A. et al. High-resolution NMR of static samples by rotation of the magnetic field. J. Magn. Reson. 169, 13–18 (2004).
Sakellariou, D. et al. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI. Magn. Reson. Chem. 48, 903–908 (2010).
Niu, Z. et al. Mapping of the binding interface of PET tracer molecules and Alzheimer disease Aβ fibrils using MAS solid-state NMR. ChemBioChem 21, 2495–2502 (2020).
Reichert, D. & Krushelnitsky, A. in Modern Methods in Solid-state NMR: A Practitioner’s Guide (ed. Hodgkinson, P.) (RSC, 2018).
Ashbrook, S. E. et al. 17O and 29Si NMR parameters of MgSiO3 phases from high-resolution solid-state NMR spectroscopy and first-principles calculations. J. Am. Chem. Soc. 129, 13213–13224 (2007).
Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).
Alanazi, A. Q. et al. Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multinuclear and two-dimensional solid-state NMR. J. Am. Chem. Soc. 141, 17659–17669 (2019).
Martins, V. et al. Higher magnetic fields, finer MOF structural information: 17O solid-state NMR at 35.2 T. J. Am. Chem. Soc. 142, 14877–14889 (2020).
Paravastu, A.K. Leapman, R.D., Yau, W.M, Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).
Acknowledgements
M.H. acknowledges support by National Institutes of Health (NIH) grant GM066976.
Author information
Authors and Affiliations
Contributions
Introduction (B.R., S.E.A., L.E. and M.H.); Experimentation (B.R., S.E.A., L.E. and M.H.); Results (B.R., S.E.A., L.E. and M.H.); Applications (B.R., S.E.A., L.E. and M.H.); Reproducibility and data deposition (B.R., S.E.A., L.E. and M.H.); Limitations and optimizations (B.R., S.E.A., L.E. and M.H.); Outlook (B.R., S.E.A., L.E. and M.H.); overview of the Primer (M.H.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Biological Magnetic Resonance Data Bank (BRMB): https://bmrb.io/
Cambridge Structural Database (CSD): https://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/
Inorganic Crystal Structure Database (ICSD): https://icsd.products.fiz-karlsruhe.de
Protein Databank (PDB): https://www.rcsb.org/
Glossary
- Non-zero nuclear spins
-
Nuclear isotopes with a non-zero spin angular momentum.
- Gyromagnetic ratio
-
The ratio of the magnetic moment of a particle to its angular momentum.
- Anisotropic
-
Orientation-dependent.
- Fourier transformation
-
A mathematical transformation that decomposes a function (usually of time) into its constituent frequencies.
- Ionothermal synthesis
-
The use of ionic liquids as both the solvent and the potential template in the formation of solids.
- Chemical shift anisotropies
-
(CSAs). The orientation-dependent component of the chemical shielding interaction.
- Paramagnetic
-
Weakly attracted by an externally applied magnetic field, typically as a result of the presence of unpaired electrons.
- Molecular dynamics
-
A computer-simulation method for characterizing the dynamics of atoms and molecules, providing an overview of how they move over a period of time.
- Density functional theory
-
(DFT). A computational quantum-mechanical modelling approach used to investigate electronic structure in many-body systems.
- Cryo-electron microscopy
-
A technique used to determine the 3D structure of samples frozen at cryogenic temperatures, which are not in a crystalline form.
- Extended X-ray absorption fine structure
-
An X-ray absorption spectroscopy technique that is amenable for non-uniform crystalline samples.
- Generalized gradient approximation
-
A type of exchange correlation functional used in density functional theory that considers the density and the gradient of the density
Rights and permissions
About this article
Cite this article
Reif, B., Ashbrook, S.E., Emsley, L. et al. Solid-state NMR spectroscopy. Nat Rev Methods Primers 1, 2 (2021). https://doi.org/10.1038/s43586-020-00002-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-020-00002-1
- Springer Nature Limited
This article is cited by
-
Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface
Nature Communications (2024)
-
A metal-free cascaded process for efficient H2O2 photoproduction using conjugated carbonyl sites
Nature Communications (2024)
-
Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions
Nature Communications (2024)
-
Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy
Biomolecular NMR Assignments (2024)
-
Structural adaptation of fungal cell wall in hypersaline environment
Nature Communications (2023)