Abstract
The stratospheric quasi-biennial oscillation (QBO) and the tropospheric Madden–Julian oscillation (MJO) are strongly linked in boreal winter. In this Review, we synthesize observational and modelling evidence for this QBO–MJO connection and discuss its effects on MJO teleconnections and subseasonal-to-seasonal predictions. After 1980, observations indicate that, during winters when lower-stratospheric QBO winds are easterly, the MJO is ~40% stronger and persists roughly 10 days longer compared with when QBO winds are westerly. Global subseasonal forecast models, in turn, show a 1-week improvement (or 25% enhancement) in MJO prediction skill in QBO easterly versus QBO westerly phases. Despite the robustness of the observed QBO–MJO link and its global impacts via atmospheric teleconnections, the mechanisms that drive the connection are uncertain. Theories largely centre on QBO-related temperature stratification effects and subsequent impacts on deep convection, although other hypotheses propose that cloud radiative effects or QBO impacts on wave propagation might be important. Most numerical models, however, are unable to reproduce the observed QBO–MJO relationship, suggesting biases, deficiencies or omission of key physical processes in the models. While future work must strive to better understand all aspects of the QBO–MJO link, focus is needed on establishing a working mechanism and capturing the connection in models.
Similar content being viewed by others
References
Sobel, A. H. Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future (Harper Wave, 2014).
Hand, E. The storm king. Science 350, 22–25 (2015).
Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V. & Tegtmeier, S. An observational history of the direct influence of the stratospheric quasi-biennial oscillation on the tropical and subtropical upper troposphere and lower stratosphere. J. Meteorol. Soc. Jpn 99, 239–267 (2021).
Yanai, M. & Maruyama, T. Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteorol. Soc. Jpn 44, 291–294 (1966).
Wallace, J. M. & Kousky, V. E. Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci. 25, 900–907 (1968).
Maruyama, Taketo The quasi-biennial oscillation (QBO) and equatorial waves. Pap. Meteorol. Geophys. 48, 1–17 (1997).
Ebdon, R. & Veryard, R. Fluctuations in equatorial stratospheric winds. Nature 189, 791–793 (1961).
Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G. Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961).
Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).
Gray, L. J. et al. Surface impacts of the quasi-biennial oscillation. Atmos. Chem. Phys. 18, 8227–8247 (2018).
Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).
Newman, P. A., Coy, L., Pawson, S. & Lait, L. R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 43, 8791–8797 (2016).
Hamilton, K., Osprey, S. & Butchart, N. Modeling the stratosphere’s “heartbeat”. Eos https://doi.org/10.1029/2015EO032301 (2015).
Lindzen, R. S. & Holton, J. R. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107 (1968).
Holton, J. R. & Lindzen, R. S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).
Plumb, R. A. & Bell, R. C. A model of the quasi-biennial oscillation on an equatorial beta-plane. Q. J. R. Meteorol. Soc. 108, 335–352 (1982).
Madden, R. A. & Julian, P. R. Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971).
Madden, R. A. & Julian, P. R. Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci. 29, 1109–1123 (1972).
Zhang, C. Madden-Julian oscillation. Rev. Geophys. 43, RG2003 (2005).
Zhang, C. & Dong, M. Seasonality of the Madden–Julian oscillation. J. Clim. 17, 3169–3180 (2004).
Hendon, H. H., Zhang, C. & Glick, J. Interannual variation of the Madden–Julian oscillation during austral summer. J. Clim. 12, 2538–2550 (1999).
Hendon, H. H. & Salby, M. L. The life cycle of the Madden–Julian oscillation. J. Atmos. Sci. 51, 2225–2237 (1994).
Zhang, C. Madden–Julian oscillation: Bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).
Vitart, F. et al. The subseasonal to seasonal (S2S) prediction project database. Bull. Am. Meteorol. Soc. 98, 163–173 (2017).
Meehl, G. A. et al. Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2, 340–357 (2021).
Yoo, C. & Son, S.-W. Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 43, 1392–1398 (2016).
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H. & Kim, J. Stratospheric control of the Madden–Julian oscillation. J. Clim. 30, 1909–1922 (2017).
Marshall, A. G., Hendon, H. H., Son, S.-W. & Lim, Y. Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Clim. Dyn. 49, 1365–1377 (2017).
Zhang, C., Adames, Á. F., Khouider, B., Wang, B. & Yang, D. Four theories of the Madden-Julian oscillation. Rev. Geophys. 58, e2019RG000685 (2020).
Christiansen, B., Yang, S. & Madsen, M. S. Do strong warm ENSO events control the phase of the stratospheric QBO? Geophys. Res. Lett. 43, 10489–10495 (2016).
Camargo, S. J. & Sobel, A. H. Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Clim. 23, 5810–5825 (2010).
Gray, W. M., Sheaffer, J. D. & Knaff, J. A. Influence of the stratospheric QBO on ENSO variability. J. Meteorol. Soc. Jpn 70, 975–995 (1992).
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A. & Waliser, D. E. On the relationship between the QBO and tropical deep convection. J. Clim. 16, 2552–2568 (2003).
Liess, S. & Geller, M. A. On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res. Atmos. 117, D03108 (2012).
Abhik, S., Hendon, H. H. & Wheeler, M. C. On the sensitivity of convectively coupled equatorial waves to the quasi-biennial oscillation. J. Clim. 32, 5833–5847 (2019).
Sakaeda, N., Dias, J. & Kiladis, G. N. The unique characteristics and potential mechanisms of the MJO-QBO relationship. J. Geophys. Res. Atmos. 125, e2020JD033196 (2020).
Lee, J. C. & Klingaman, N. P. The effect of the quasi-biennial oscillation on the Madden–Julian oscillation in the Met Office Unified Model Global Ocean Mixed Layer configuration. Atmos. Sci. Lett. 19, e816 (2018).
Lim, Y. & Son, S.-W. QBO-MJO connection in CMIP5 models. J. Geophys. Res. Atmos. 125, e2019JD032157 (2020).
Kim, H., Caron, J. M., Richter, J. H. & Simpson, I. R. The lack of QBO-MJO connection in CMIP6 models. Geophys. Res. Lett. 47, e2020GL087295 (2020).
Martin, Z., Orbe, C., Wang, S. & Sobel, A. H. The MJO-QBO relationship in a GCM with stratospheric nudging. J. Clim. 34, 4603–4624 (2021).
Kuma, K.-I. A quasi-biennial oscillation in the intensity of the intra-seasonal oscillation. Int. J. Climatol. 10, 263–278 (1990).
Densmore, C. R., Sanabia, E. R. & Barrett, B. S. QBO influence on MJO amplitude over the Maritime Continent: Physical mechanisms and seasonality. Mon. Weather Rev. 147, 389–406 (2019).
Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K. & Vitart, F. Impact of the QBO on prediction and predictability of the MJO convection. J. Geophys. Res. Atmos. 124, 11766–11782 (2019).
Klotzbach, P. et al. On the emerging relationship between the stratospheric Quasi-Biennial oscillation and the Madden-Julian oscillation. Sci. Rep. 9, 2981 (2019).
Zhang, C. & Zhang, B. QBO-MJO connection. J. Geophys. Res. Atmos. 123, 2957–2967 (2018).
Nishimoto, E. & Yoden, S. Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci. 74, 1105–1125 (2017).
Hood, L. L. QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum. Geophys. Res. Lett. 44, 3849–3857 (2017).
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003 (2009).
Gray, W. M. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather Rev. 112, 1649–1668 (1984).
Richter, J. et al. Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos. 125, e2019JD032362 (2020).
Ahn, M.-S. et al. MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett. 47, e2020GL087250 (2020).
Giorgetta, M., Manzini, E., Roeckner, E., Esch, M. & Bengtsson, L. Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Clim. 19, 3882–3901 (2006).
Charlton-Perez, A. J. et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).
Slingo, J. et al. Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Clim. Dyn. 12, 325–357 (1996).
Kim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W. & Kang, I.-S. A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Clim. 24, 5506–5520 (2011).
Martin, Z., Vitart, F., Wang, S. & Sobel, A. The impact of the stratosphere on the MJO in a forecast model. J. Geophys. Res. Atmos. 125, e2019JD032106 (2020).
Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H. & Seo, K.-H. Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Clim. Dyn. 53, 1681–1695 (2019).
Abhik, S. & Hendon, H. H. Influence of the QBO on the MJO during coupled model multiweek forecasts. Geophys. Res. Lett. 46, 9213–9221 (2019).
Kim, H., Richter, J. H. & Martin, Z. Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos. 124, 12655–12666 (2019).
Back, S.-Y., Han, J.-Y. & Son, S.-W. Modeling evidence of QBO-MJO connection: A case study. Geophys. Res. Lett. 47, e2020GL089480 (2020).
Martin, Z., Wang, S., Nie, J. & Sobel, A. The impact of the QBO on MJO convection in cloud-resolving simulations. J. Atmos. Sci. 76, 669–688 (2019).
Virts, K. S. & Wallace, J. M. Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci. 71, 1143–1157 (2014).
Del Genio, A. D., Chen, Y., Kim, D. & Yao, M. The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Clim. 25, 3755–3770 (2012).
Hendon, H. H. & Abhik, S. Differences in vertical structure of the Madden-Julian Oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett. 45, 4419–4428 (2018).
Nie, J. & Sobel, A. H. Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci. 72, 3625–3638 (2015).
Giorgetta, M. A., Bengtsson, L. & Arpe, K. An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim. Dyn. 15, 435–450 (1999).
Madden, R. A. Seasonal variations of the 40-50 day oscillation in the tropics. J. Atmos. Sci. 43.24, 3138–3158 (1986).
Martin, Z., Sobel, A., Butler, A. & Wang, S. Variability in QBO temperature anomalies on annual and decadal timescales. J. Clim. 34, 589–605 (2021).
Tegtmeier, S. et al. Zonal asymmetry of the QBO temperature signal in the tropical tropopause region. Geophys. Res. Lett. 47, e2020GL089533 (2020).
Reid, G. C. & Gage, K. S. On the annual variation of height of the tropical tropopause. J. Atmos. Sci. 38, 1928–1937 (1981).
Yulaeva, E., Holton, J. R. & Wallace, J. M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994).
Aquila, V. et al. Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings. J. Geophys. Res. Atmos. 121, 8067–8082 (2016).
Gettleman, A. & Forester, P. M. F. A climatology of the tropical tropopause layer. J. Meteorol. Soc. Jpn 80, 911–924 (2002).
Sun, L., Wang, H. & Liu, F. Combined effect of the QBO and ENSO on the MJO. Atmos. Ocean. Sci. Lett. 12, 170–176 (2019).
Hartmann, D. L., Holton, J. R. & Fu, Q. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett. 28, 1969–1972 (2001).
Yang, Q., Fu, Q. & Hu, Y. Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res. Atmos. 115, D00H12 (2010).
Hong, Y., Liu, G. & Li, J.-L. Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Clim. 29, 7651–7674 (2016).
Zhang, C. & Ling, J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Clim. 30, 3439–3459 (2017).
Raymond, D. J. A new model of the Madden–Julian oscillation. J. Atmos. Sci. 58, 2807–2819 (2001).
Sobel, A. & Maloney, E. An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci. 69, 1691–1705 (2012).
Sobel, A. & Maloney, E. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 70, 187–192 (2013).
Crueger, T. & Stevens, B. The effect of atmospheric radiative heating by clouds on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst. 7, 854–864 (2015).
Del Genio, A. D. & Chen, Y. Cloud-radiative driving of the Madden-Julian oscillation as seen by the A-Train. J. Geophys. Res. Atmos. 120, 5344–5356 (2015).
Zhang, B., Kramer, R. J. & Soden, B. J. Radiative feedbacks associated with the Madden–Julian oscillation. J. Clim. 32, 7055–7065 (2019).
Adames, Á. F. & Kim, D. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci. 73, 913–941 (2016).
Kim, D., Ahn, M., Kang, I. & Del Genio, A. D. Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Clim. 28, 6979–6994 (2015).
Davis, S. M., Liang, C. K. & Rosenlof, K. H. Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett. 40, 2862–2866 (2013).
Tseng, H.-H. & Fu, Q. Temperature control of the variability of tropical tropopause layer cirrus clouds. J. Geophys. Res. Atmos. 122, 11062–11075 (2017).
Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. Soc. 84, 1547–1564 (2003).
Lane, T. P. Does lower-stratospheric shear influence the mesoscale organization of convection? Geophys. Res. Lett. 48, e2020GL091025 (2021).
Bui, H., Nishimoto, E. & Yoden, S. Downward influence of QBO-like oscillation on moist convection in a two-dimensional minimal model framework. J. Atmos. Sci. 74, 3635–3655 (2017).
Nishimoto, E., Yoden, S. & Bui, H. Vertical momentum transports associated with moist convection and gravity waves in a minimal model of QBO-like oscillation. J. Atmos. Sci. 73, 2935–2957 (2016).
Raphaldini, B., Teruya, A. S. W., Leite da Silva Dias, P., Massaroppe, L. & Takahashi, D. Y. Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective. Earth Syst. Dyn. 12, 83–101 (2021).
Wang, J., Kim, H. -M. & Chang, E. K. M. Interannual modulation of Northern Hemisphere winter storm tracks by the QBO. Geophys. Res. Lett. 45, 2786–2794 (2018).
White, I. P., Lu, H., Mitchell, N. J. & Phillips, T. Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci. 72, 4487–4507 (2015).
Garfinkel, C. I. & Hartmann, D. L. Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J. Geophys. Res. 115, D20116 (2010).
Kim, H., Vitart, F. & Waliser, D. E. Prediction of the Madden–Julian oscillation: A review. J. Clim. 31, 9425–9443 (2018).
Pegion, K. et al. The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Am. Meteorol. Soc. 100, 2043–2060 (2019).
Baggett, C. F., Barnes, E. A., Maloney, E. D. & Mundhenk, B. D. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett. 44, 7528–7536 (2017).
Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. NPJ Clim. Atmos. Sci. 1, 20177 (2018).
Mayer, K. J. & Barnes, E. A. Subseasonal midlatitude prediction skill following quasi-biennial oscillation and Madden–Julian oscillation activity. Weather Clim. Dyn. 1, 247–259 (2020).
Nardi, K. M. et al. Skillful all-season S2S prediction of US precipitation using the MJO and QBO. Weather Forecast. 35, 2179–2198 (2020).
Hood, L. L., Redman, M. A., Johnson, W. L. & Galarneau, T. J. Jr Stratospheric influences on the MJO-induced Rossby wave train: Effects on intraseasonal climate. J. Clim. 33, 365–389 (2020).
Wang, J., Kim, H.-M., Chang, E. K. M. & Son, S.-W. Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos. 123, 3976–3992 (2018).
Toms, B. A., Barnes, E. A., Maloney, E. D. & van den Heever, S. C. The global teleconnection signature of the Madden-Julian oscillation and its modulation by the quasi-biennial oscillation. J. Geophys. Res. Atmos. 125, e2020JD032653 (2020).
Kim, H., Son, S. -W. & Yoo, C. QBO modulation of the MJO-related precipitation in East Asia. J. Geophys. Res. Atmos. 125, e2019JD031929 (2020).
Feng, P.-N. & Lin, H. Modulation of the MJO-related teleconnections by the QBO. J. Geophys. Res. Atmos. 124, 12022–12033 (2019).
Song, L. & Wu, R. Modulation of the westerly and easterly quasi-biennial oscillation phases on the connection between the Madden–Julian oscillation and the Arctic Oscillation. Atmosphere 11, 175 (2020).
Kim, Y.-H. & Chun,, H. -Y. Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos. 120, 1065–1090 (2015).
Pahlavan, H. A., Wallace, J. M., Fu, Q. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part II: evaluation of waves and wave forcing. J. Atmos. Sci. 78, 693–707 (2021).
Butler, A. H. et al. The Climate-system Historical Forecast Project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q. J. R. Meteorol. Soc. 142, 1413–1427 (2016).
Garfinkel, C. I. et al. Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos. 123, 7855–7866 (2018).
Liebmann, B. & Smith, C. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Naujokat, B. An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci. 43, 1873–1877 (1986).
Kiladis, G. N. et al. A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Weather Rev. 142, 1697–1715 (2014).
Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 132.8, 1917–1932 (2004).
Kobayashi, S. et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).
Oliver, E. C. J. & Thompson, K. A reconstruction of Madden–Julian oscillation variability from 1905 to 2008. J. Clim. 25, 1996–2019 (2012).
Liu, Z., Ostrenga, D., Teng, W. & Kempler, S. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc. 93, 1317–1325 (2012).
Acknowledgements
We are grateful to S.-Y. Back for helping to produce figures, to E. Oliver and P. Klotzbach for sharing the reconstructed MJO index in Fig. 2b, and to I. Simpson for sharing the model data in Fig. 4. Thanks to M. Wheeler for helpful feedback on an early version of this manuscript. Z.M. acknowledges support for this work from the National Science Foundation under Award No. 2020305. S.-W.S. is supported by the Korea Meteorological Administration Research and Development Program under Grant KMI (2018-01011). H.K. acknowledges support from NSF Grant AGS-1652289. A.S. acknowledges support from NSF AGS-1543932. PMEL contribution number 5186.
Author information
Authors and Affiliations
Contributions
S.-W. S. conceived the work, created the general outline and coordinated creation of figures. Z.M. wrote the initial draft and coordinated subsequent editing. All authors contributed to writing and editing the manuscript, including especially selection of figures, formulation of schematics and discussion of key points and of future work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Hai Lin, Andrew Charlton-Perez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Martin, Z., Son, SW., Butler, A. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat Rev Earth Environ 2, 477–489 (2021). https://doi.org/10.1038/s43017-021-00173-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00173-9
- Springer Nature Limited
This article is cited by
-
QBO modulation of MJO teleconnections in the North Pacific: impact of preceding MJO phases
npj Climate and Atmospheric Science (2024)
-
Impact of the stratospheric quasi-biennial oscillation on the early stage of the Indian summer monsoon
Climate Dynamics (2024)
-
A revisit of the linearity in the combined effect of ENSO and QBO on the stratosphere: model evidence from CMIP5/6
Climate Dynamics (2024)
-
MJO-equatorial Rossby wave interferences in the tropical intraseasonal oscillation
Climate Dynamics (2024)
-
QBO deepens MJO convection
Nature Communications (2023)