Skip to main content

Advertisement

Log in

Limits to food production from the sea

  • Comment
  • Published:

From Nature Food

View current issue Submit your manuscript

Mariculture has attracted much attention as a potential new source of food. Yet, the trophic efficiency of marine ecosystems is already high, making further improvements hard to achieve. Increasing marine food production may be possible by fishing at lower trophic levels, but the risks of such a practice must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Secondary production versus net primary production for a variety of ecosystems and agrosystems.
Fig. 2: Ecological efficiency of a variety of ecosystems and agrosystems.

References

  1. van Zanten, H. H. E., van Ittersum, M. K. & de Boer, I. J. M. Glob. Food Secur. 21, 18–22 (2019).

    Article  Google Scholar 

  2. Duarte, C. M. et al. Bioscience 59, 967–976 (2009).

    Article  Google Scholar 

  3. Marra, J. Nature 436, 175–176 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Costello, C. et al. Nature https://doi.org/10.1038/s41586-020-2616-y (2020).

  5. Jouray, J.-B., Blasiak, R., Nörström, A. V., Österblom, H. & Nyström, M. One Earth 2, 43–54 (2020).

    Article  Google Scholar 

  6. Costello, C. et al. The Future of Food from the Sea (World Resources Institute, 2019).

  7. Pharo, P. & Oppenheim, J. Growing Better: Ten Critical Transitions to Transform Food and Land Use (The Food and Land Use Coalition, 2019).

  8. Gentry, R. R. et al. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  Google Scholar 

  9. Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Curr. Biol. 29, 3087–3093 (2019).

    Article  CAS  Google Scholar 

  10. Field, C., Behrenfeld, M., Randerson, J. & Falkowski, P. Science 281, 237–240 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Shurin, J., Gruner, D. & Hillebrand, H. Proc. Royal Soc. B 273, 1–9 (2006).

    Article  Google Scholar 

  12. Tucker, M. A. & Rogers, T. L. Proc. Royal Soc. B 281, 20142103 (2014).

    Article  Google Scholar 

  13. Kolding, J., Bundy, A., van Zwieten, P. A. M. & Plank, M. J. ICES J. Mar. Sci. 73, 1697–1713 (2016).

    Article  Google Scholar 

  14. Rossiter, W., King, G. & Johnson, B. Am. Midl. Nat. 177, 1–14 (2017).

    Article  Google Scholar 

  15. Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2002).

  16. Stebbins, G. L. Ann. Missouri Bot. Gard. 68, 75–86 (1981).

    Article  Google Scholar 

  17. Cyr, H. & Pace, M. Nature 361, 148–150 (1993).

    Article  ADS  Google Scholar 

  18. Cebrian, J. & Lartigue, J. Ecol. Monogr. 74, 237–259 (2004).

    Article  Google Scholar 

  19. Humphreys, W. F. J. Anim. Ecol. 48, 427–453 (1979).

    Article  Google Scholar 

  20. Conti, L. & Scardi, M. Mar. Ecol. Prog. Ser. 410, 233–244 (2010).

    Article  ADS  Google Scholar 

  21. Robinson, J. & Bodmer, R. J. Wildl. Manage. 63, 1–13 (1999).

    Article  Google Scholar 

  22. Greater North Sea Ecoregion — Fisheries Overview (ICES, 2018).

  23. Oesterheld, M., Sala, O. E. & McNaughton, S. J. Nature 356, 234–236 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Coe, M. J., Cumming, D. H. & Phillipson, J. Oecologia 22, 341–354 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Niedertscheider, M. et al. Environ. Res. Lett. 11, 014008 (2016).

    Article  ADS  Google Scholar 

  26. Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Environ. Res. Lett. 13, 024017 (2018).

    Article  ADS  Google Scholar 

  27. Kemp, W., Brooks, M. & Hood, R. Mar. Ecol. Prog. Ser. 223, 73–87 (2001).

    Article  ADS  Google Scholar 

  28. Smil, V. Annu. Rev. Energy Environ. 25, 53–88 (2000).

    Article  Google Scholar 

  29. Cordell, D., Drangert, J.-O. & White, S. Glob. Environ. Chang. 19, 292–305 (2009).

    Article  Google Scholar 

  30. Zhou, S. & Flynn, P. Clim. Change 71, 203–220 (2005).

    Article  ADS  CAS  Google Scholar 

  31. Nicol, S., Foster, J. & Kawaguchi, S. Fish Fish. 13, 30–40 (2012).

    Article  Google Scholar 

  32. McCauley, D. J. et al. Ecol. Lett. 21, 439–454 (2018).

    Article  Google Scholar 

  33. Bar-On, Y. M., Phillips, R. & Milo, R. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  34. Ytrestøyl, T., Aas, T. S. & Åsgård, T. Aquaculture 448, 365–374 (2015).

    Article  Google Scholar 

  35. Ryther, J. H. Science 166, 72–76 (1969).

    Article  ADS  CAS  Google Scholar 

  36. McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Nature 341, 142–144 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. Folmer, P. Herman and A. Rijnsdorp for providing helpful comments on an earlier draft of this Comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap van der Meer.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Meer, J. Limits to food production from the sea. Nat Food 1, 762–764 (2020). https://doi.org/10.1038/s43016-020-00202-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00202-8

  • Springer Nature Limited

This article is cited by

Navigation