Skip to main content
Log in

Confounding issues in the ‘humanized’ BAT of mice

  • Matters Arising
  • Published:

From Nature Metabolism

View current issue Submit your manuscript

Matters Arising to this article was published on 13 April 2020

The Original Article was published on 19 August 2019

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. de Jong, J. M. A. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat. Metab. 1, 830–843 (2019).

    Article  Google Scholar 

  2. Yoneshiro, T. et al. Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R999–R1009 (2016).

    Article  Google Scholar 

  3. Ouellet, V. et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 96, 192–199 (2011).

    Article  CAS  Google Scholar 

  4. Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137 (2018).

    Article  CAS  Google Scholar 

  5. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  Google Scholar 

  6. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    Article  CAS  Google Scholar 

  7. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    Article  CAS  Google Scholar 

  8. Chen, Y. et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565, 180–185 (2019).

    Article  CAS  Google Scholar 

  9. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  Google Scholar 

  10. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  Google Scholar 

  11. Hasegawa, Y. et al. Repression of adipose tissue fibrosis through a PRDM16–GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab. 27, 180–194 (2018).

    Article  CAS  Google Scholar 

  12. Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.K. and B.M.S. wrote the manuscript.

Corresponding authors

Correspondence to Shingo Kajimura or Bruce M. Spiegelman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajimura, S., Spiegelman, B.M. Confounding issues in the ‘humanized’ BAT of mice. Nat Metab 2, 303–304 (2020). https://doi.org/10.1038/s42255-020-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0192-y

  • Springer Nature Limited

This article is cited by

Navigation