Abstract
Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time. Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal features of granular matter and some unique approaches developed for special but important applications.
Key points
-
Particle-based computational modelling that considers realistic particle shapes has become indispensable for understanding and predicting the complex behaviour of granular matter in engineering, industry and nature.
-
How to effectively represent the shape of a particle is closely related to its intended purpose; the modelling of naturally occurring granular materials may differ from approaches for engineered particles.
-
Particle shape representation is inseparably coupled to the detection of interparticle contacts, both of which critically determine the computational accuracy and efficiency of simulations of granular matter.
-
Specific methodologies are needed to address challenges arising from crushable particles or highly deformable particles, in which the co-evolution of particle shapes and sizes and hence contact detection algorithms dictate both accuracy and efficiency.
-
Consideration of shape effects in coupled simulations of granular particles and environmental fluids requires revamped theories and methods to faithfully reflect their underpinning multiphase, multiphysics nature.
-
Incorporating realistic particle shapes in granular matter modelling must harness the latest advances in parallel computing and machine learning for effective large-scale computations.
Similar content being viewed by others
References
Marzinek, J. K., Huber, R. G. & Bond, P. J. Multiscale modelling and simulation of viruses. Curr. Opin. Struct. Biol. 61, 146–152 (2020).
Zong, Y. & Zhao, K. Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D. Curr. Opin. Solid State Mater. Sci. 26, 101022 (2022).
Voss, J. & Wittkowski, R. On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. Nanoscale Adv. 2, 3890–3899 (2020).
Wang, J. et al. Shape matters: morphologically biomimetic particles for improved drug delivery. Chem. Eng. J. 410, 127849 (2021).
Luo, X., Wang, Z., Yang, L., Gao, T. & Zhang, Y. A review of analytical methods and models used in atmospheric microplastic research. Sci. Total Environ. 828, 154487 (2022).
Mollon, G. & Zhao, J. Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15, 95–108 (2013).
Su, Y. et al. Determination and interpretation of bonded-particle model parameters for simulation of maize kernels. Biosyst. Eng. 210, 193–205 (2021).
Ghadiri, M. et al. Cohesive powder flow: trends and challenges in characterisation and analysis. KONA Powder Part. J. https://doi.org/10.14356/kona.2020018 (2020).
Piton, G., Goodwin, S. R., Mark, E. & Strouth, A. Debris flows, boulders and constrictions: a simple framework for modeling jamming, and its consequences on outflow. J. Geophys. Res. Earth Surf. 127, e2021JF006447 (2022).
Rackow, T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Ocean 122, 3170–3190 (2017).
Ferrari, F. & Tanga, P. The role of fragment shapes in the simulations of asteroids as gravitational aggregates. Icarus 350, 113871 (2020).
Shi, L., Zhao, W., Sun, B. & Sun, W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. Int. J. Agric. Biol. Eng. 13, 15–25 (2020).
Cui, X., Gui, N., Yang, X., Tu, J. & Jiang, S. Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core. Nucl. Eng. Des. 371, 110934 (2021).
Tang, X. & Yang, J. Wave propagation in granular material: what is the role of particle shape? J. Mech. Phys. Solids 157, 104605 (2021).
Jones, R. P., Ottino, J. M., Umbanhowar, P. B. & Lueptow, R. M. Predicting segregation of nonspherical particles. Phys. Rev. Fluids 6, 054301 (2021).
Xia, Y. et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation. Biosyst. Eng. 205, 187–211 (2021).
Zhang, R., Ku, X., Yang, S., Wang, J. & Fan, L. Modeling and simulation of the motion and gasification behaviors of superellipsoidal biomass particles in an entrained-flow reactor. Energy Fuels 35, 1488–1502 (2021).
Leisner, A. M., Richardson, D. C., Statler, T. S., Nichols, W. & Zhang, Y. An extended parameter space study of the effect of cohesion in gravitational aggregates through spin-up simulations. Planet. Space Sci. 182, 104845 (2020).
Wang, F., Liu, J. & Zeng, H. Interactions of particulate matter and pulmonary surfactant: implications for human health. Adv. Colloid Interface Sci. 284, 102244 (2020).
Wang, Y., Li, L., Hofmann, D., Andrade, J. E. & Daraio, C. Structured fabrics with tunable mechanical properties. Nature 596, 238 (2021).
Keller, S. & Jaeger, H. M. Aleatory architectures. Granul. Matter 18, 29 (2016).
Dierichs, K. & Menges, A. Designing architectural materials: from granular form to functional granular material. Bioinspir. Biomim. 16, 065010 (2021).
Nunzi, F. & Angelis, F. D. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci. 13, 9485–9497 (2022).
Ostanin, I., Ballarini, R., Potyondy, D. & Dumitrică, T. A distinct element method for large scale simulations of carbon nanotube assemblies. J. Mech. Phys. Solids 61, 762–782 (2013).
Gentili, D. & Ori, G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. Nanoscale 14, 14385–14432 (2022).
Li, Z., Yang, F. & Yin, Y. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater. 30, 1903467 (2020).
Sveinsson, H. A. et al. Direct atomic simulations of facet formation and equilibrium shapes of SiC nanoparticles. Cryst. Growth Des. 20, 2147–2152 (2020).
Espinosa, I. M. P., Jacobs, T. D. B. & Martini, A. Atomistic simulations of the elastic compression of platinum nanoparticles. Nanoscale Res. Lett. 17, 96 (2022).
Voss, J. & Wittkowski, R. Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves. Phys. Fluids 34, 052007 (2022).
Wang, C. & Jiang, H. Different-shaped micro-objects driven by active particle aggregations. Soft Matter 16, 4422–4430 (2020).
Chen, G. et al. Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat. Commun. 13, 5549 (2022).
Palanisamy, D. & den Otter, W. K. Intrinsic viscosities of non-spherical colloids by Brownian dynamics simulations. J. Chem. Phys. 151, 184902 (2019).
Chakrapani, T. H., Bazyar, H., Lammertink, R. G. H., Luding, S. & Otter, W. Kden The permeability of pillar arrays in microfluidic devices: an application of Brinkman’s theory towards wall friction. Soft Matter 19, 436–450 (2023).
Schoenhoefer, P. W. A., Marechal, M., Cleaver, D. J. & Schroeder-Turk, G. E. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction of pear-shaped particles in a hard-sphere solvent. J. Chem. Phys. 153, 034904 (2020).
Rosenberg, M., Dekker, F., Donaldson, J. G., Philipse, A. P. & Kantorovich, S. S. Self-assembly of charged colloidal cubes. Soft Matter 16, 4451–4461 (2020).
Mistry, A., Heenan, T., Smith, K., Shearing, P. & Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. ACS Energy Lett. 7, 1871–1879 (2022).
Li, L., Wang, J., Yang, S. & Klein, B. A voxel-based clump generation method used for DEM simulations. Granul. Matter 24, 89 (2022).
Huet, D. P., Jalaal, M., van Beek, R., van der Meer, D. & Wachs, A. Granular avalanches of entangled rigid particles. Phys. Rev. Fluids 6, 104304 (2021).
Feng, Y. T. Thirty years of developments in contact modelling of non-spherical particles in DEM: a selective review. Acta Mech. Sin. 39, 722343 (2023).
Neto, A. G. & Wriggers, P. Discrete element model for general polyhedra. Comput. Part. Mech. 9, 353–380 (2022).
Zhang, R., Ku, X. & Lin, J. Fluidization of the spherocylindrical particles: comparison of multi-sphere and bond-sphere models. Chem. Eng. Sci. 253, 117540 (2022).
Alonso-Marroqun, F. Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008).
Liu, L. & Ji, S. A new contact detection method for arbitrary dilated polyhedra with potential function in discrete element method. Int. J. Numer. Methods Eng. 121, 5742–5765 (2020).
Shao, L., Mao, J., Zhao, L. & Li, T. A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process. Eng. Fract. Mech. 263, 108290 (2022).
Delaney, G. W. & Cleary, P. W. The packing properties of superellipsoids. Europhys. Lett. 89, 34002 (2010).
Wellmann, C., Lillie, C. & Wriggers, P. A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25, 432–442 (2008).
Zhao, S., Zhang, N., Zhou, X. & Zhang, L. Particle shape effects on fabric of granular random packing. Powder Technol. 310, 175–186 (2017).
Peters, J. F., Hopkins, M. A., Kala, R. & Wahl, R. E. A poly‐ellipsoid particle for non‐spherical discrete element method. Eng. Comput. 26, 645–657 (2009).
Zhang, B., Regueiro, R., Druckrey, A. & Alshibli, K. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm. Eng. Comput. 35, 733–771 (2018).
Zhao, S. & Zhao, J. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43, 2147–2169 (2019).
Lai, Z. & Huang, L. A polybézier-based particle model for the DEM modeling of granular media. Comput. Geotech. 134, 104052 (2021).
Zhang, P., Dong, Y., Galindo-Torres, S. A., Scheuermann, A. & Li, L. Metaball based discrete element method for general shaped particles with round features. Comput. Mech. 67, 1243–1254 (2021).
Craveiro, M. V., Neto, A. G. & Wriggers, P. Contact between rigid convex NURBS particles based on computer graphics concepts. Comput. Methods Appl. Mech. Eng. 386, 114097 (2021).
Lim, K.-W., Krabbenhoft, K. & Andrade, J. E. On the contact treatment of non-convex particles in the granular element method. Comp. Part. Mech. 1, 257–275 (2014).
Mollon, G. & Zhao, J. 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014).
Zhou, B. & Wang, J. Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis: generation of a realistic 3D sand assembly. Int. J. Numer. Anal. Meth. Geomech. 41, 93–109 (2017).
Sun, Q. & Zheng, J. Clone granular soils with mixed particle morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process. Acta Geotech. 15, 2779–2796 (2020).
Bardhan, J. P. & Knepley, M. G. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory. Comput. Sci. Disc. 5, 014006 (2012).
Klotz, T. S., Bardhan, J. P. & Knepley, M. G. Efficient evaluation of ellipsoidal harmonics for potential modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.1708.06028 (2017).
Reimond, S. & Baur, O. Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System bodies. Case study: comet 67P/Churyumov-Gerasimenko: gravitational potential of small bodies. J. Geophys. Res. Planets 121, 497–515 (2016).
Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979).
Smallenburg, F. Efficient event-driven simulations of hard spheres. Eur. Phys. J. E 45, 22 (2022).
Cantor, D., Azema, E. & Preechawuttipong, I. Microstructural analysis of sheared polydisperse polyhedral grains. Phys. Rev. E 101, 062901 (2020).
Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech. 230, 1919–1980 (2019).
Radjai, F. & Richefeu, V. Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 715–728 (2009).
Dubois, F., Acary, V. & Jean, M. The contact dynamics method: a nonsmooth story. C. R. Méc. 346, 247–262 (2018).
Hahn, J. K. Realistic animation of rigid bodies. SIGGRAPH Comput. Graph. 22, 299–308 (1988).
Tang, X., Paluszny, A. & Zimmerman, R. W. An impulse-based energy tracking method for collision resolution. Comput. Methods Appl. Mech. Eng. 278, 160–185 (2014).
Lee, S. J. & Hashash, Y. M. A. iDEM: an impulse‐based discrete element method for fast granular dynamics. Int. J. Numer. Methods Eng. 104, 79–103 (2015).
Jehser, M. & Likos, C. N. Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. Colloid Polym. Sci. 298, 735–745 (2020).
Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids. J. Comput. Phys. 202, 765–793 (2005).
Skora, T., Vaghefikia, F., Fitter, J. & Kondrat, S. Macromolecular crowding: how shape and interactions affect diffusion. J. Phys. Chem. B 124, 7537–7543 (2020).
Baldauf, L., Teich, E. G., Schall, P., van Anders, G. & Rossi, L. Shape and interaction decoupling for colloidal preassembly. Sci. Adv. 8, eabm0548 (2022).
Chiappini, M. & Dijkstra, M. A generalized density-modulated twist-splay-bend phase of banana-shaped particles. Nat. Commun. 12, 2157 (2021).
Pal, A. et al. Shape matters in magnetic-field-assisted assembly of prolate colloids. ACS Nano 16, 2558–2568 (2022).
Ferrari, F., Lavagna, M. & Blazquez, E. A parallel-GPU code for asteroid aggregation problems with angular particles. Mon. Not. Roy. Astron. Soc. 492, 749–761 (2020).
Zhao, S., Lai, Z. & Zhao, J. Leveraging ray tracing cores for particle‐based simulations on GPUs. Int. J. Numer. Methods Eng. 124, 696–713 (2022).
Howard, M. P., Anderson, J. A., Nikoubashman, A., Glotzer, S. C. & Panagiotopoulos, A. Z. Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units. Comput. Phys. Commun. 203, 45–52 (2016).
Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202, 737–764 (2005).
Girault, I., Chadil, M.-A. & Vincent, S. Comparison of methods computing the distance between two ellipsoids. J. Comput. Phys. 458, 111100 (2022).
Eliáš, J. Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014).
Zhao, S., Zhou, X. & Liu, W. Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17, 793–806 (2015).
Günther, O. & Wong, E. A dual approach to detect polyhedral intersections in arbitrary dimensions. BIT Numer. Math. 31, 2–14 (1991).
Feng, Y. T. An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification. Comput. Methods Appl. Mech. Eng. 379, 113750 (2021).
Lai, Z., Chen, Q. & Huang, L. Fourier series-based discrete element method for computational mechanics of irregular-shaped particles. Comput. Methods Appl. Mech. Eng. 362, 112873 (2020).
He, H. & Zheng, J. Simulations of realistic granular soils in oedometer tests using physics engine. Int. J. Numer. Anal. Methods Geomech. 44, 983–1002 (2020).
Zhu, F. & Zhao, J. Modeling continuous grain crushing in granular media: a hybrid peridynamics and physics engine approach. Comput. Methods Appl. Mech. Eng. 348, 334–355 (2019).
Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. A mean-field approach to simulating anisotropic particles. J. Chem. Phys. 153, 084106 (2020).
Lubachevsky, B. D. & Stillinger, F. H. Geometric properties of random disk packings. J. Stat. Phys. 60, 561–583 (1990).
Maher, C. E., Stillinger, F. H. & Torquato, S. Characterization of void space, large-scale structure, and transport properties of maximally random jammed packings of superballs. Phys. Rev. Mater. 6, 025603 (2022).
Cundall, P. A. Formulation of a three-dimensional distinct element model — part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 107–116 (1988).
Nezami, E. G., Hashash, Y. M. A., Zhao, D. W. & Ghaboussi, J. A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004).
Azéma, E., Radjai, F. & Dubois, F. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013).
Zhan, L., Peng, C., Zhang, B. & Wu, W. A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. Powder Technol. 377, 760–779 (2021).
Capozza, R. & Hanley, K. J. A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM. Powder Technol. 378, 528–537 (2021).
Wang, X., Yin, Z.-Y., Xiong, H., Su, D. & Feng, Y.-T. A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles. Int. J. Numer. Methods Eng. 122, 5626–5655 (2021).
Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).
Harmon, J. M., Arthur, D. & Andrade, J. E. Level set splitting in DEM for modeling breakage mechanics. Comput. Methods Appl. Mech. Eng. 365, 112961 (2020).
Duriez, J. & Galusinski, C. A level set-discrete element method in YADE for numerical, micro-scale, geomechanics with refined grain shapes. Comput. Geosci. 157, 104936 (2021).
Lai, Z., Zhao, S., Zhao, J. & Huang, L. Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes. Comput. Mech. 70, 763–783 (2022).
Mori, Y. & Sakai, M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer. Chem. Eng. J. 429, 132415 (2022).
Huang, S., Huang, L., Lai, Z. & Zhao, J. Morphology characterization and discrete element modeling of coral sand with intraparticle voids. Eng. Geol. 315, 107023 (2023).
Feng, Y. T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general contact model. Comput. Methods Appl. Mech. Eng. 373, 113454 (2021).
Hoque, S. Z., Anand, D. V. & Patnaik, B. S. A dissipative particle dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel. Comput. Part. Mech. 9, 1219–1231 (2022).
Villone, M. M. & Maffettone, P. L. Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. Rheol. Acta 58, 109–130 (2019).
Norouzi, M., Andric, J., Vernet, A. & Pallares, J. Shape evolution of long flexible fibers in viscous flows. Acta Mech. 233, 2077–2091 (2022).
Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).
Tavares, L. M. & das Chagas, A. S. A stochastic particle replacement strategy for simulating breakage in DEM. Powder Technol. 377, 222–232 (2021).
Jiang, Y., Mora, P., Herrmann, H. J. & Alonso-Marroquín, F. Damage separation model: a replaceable particle method based on strain energy field. Phys. Rev. E 104, 045311 (2021).
Orozco, L. F., Delenne, J.-Y., Sornay, P. & Radjai, F. Scaling behavior of particle breakage in granular flows inside rotating drums. Phys. Rev. E 101, 052904 (2020).
Ramkrishna, D. & Singh, M. R. Population balance modeling: current status and future prospects. Annu. Rev. Chem. Biomol. Eng. 5, 123–146 (2014).
Cabiscol, R., Finke, J. H. & Kwade, A. A bi-directional DEM-PBM coupling to evaluate chipping and abrasion of pharmaceutical tablets. Adv. Powder Technol. 32, 2839–2855 (2021).
Kuang, D.-M., Long, Z.-L., Ogwu, I. & Chen, Z. A discrete element method (DEM)-based approach to simulating particle breakage. Acta Geotech. 17, 2751–2764 (2022).
Fang, C., Gong, J., Nie, Z., Li, B. & Li, X. DEM study on the microscale and macroscale shear behaviours of granular materials with breakable and irregularly shaped particles. Comput. Geotech. 137, 104271 (2021).
Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Bonded-cell model for particle fracture. Phys. Rev. E 91, 022203 (2015).
Cantor, D., Azéma, E., Sornay, P. & Radjai, F. Three-dimensional bonded-cell model for grain fragmentation. Comp. Part. Mech. 4, 441–450 (2017).
Nikolić, M., Karavelić, E., Ibrahimbegovic, A. & Miščević, P. Lattice element models and their peculiarities. Arch. Comput. Methods Eng. 25, 753–784 (2018).
Delenne, J.-Y., Topin, V. & Radjai, F. Failure of cemented granular materials under simple compression: experiments and numerical simulations. Acta Mech. 205, 9–21 (2009).
Affes, R., Delenne, J.-Y., Monerie, Y., Radjaï, F. & Topin, V. Tensile strength and fracture of cemented granular aggregates. Eur. Phys. J. E 35, 117 (2012).
Topin, V., Radjaï, F., Delenne, J.-Y. & Mabille, F. Mechanical modeling of wheat hardness and fragmentation. Powder Technol. 190, 215–220 (2009).
Sargado, J. M., Keilegavlen, E., Berre, I. & Nordbotten, J. M. A combined finite element–finite volume framework for phase-field fracture. Comput. Methods Appl. Mech. Eng. 373, 113474 (2021).
Rahimi, M. N. & Moutsanidis, G. A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. Comput. Methods Appl. Mech. Eng. 398, 115191 (2022).
Mohajerani, S. & Wang, G. ‘Touch-aware’ contact model for peridynamics modeling of granular systems. Int. J. Numer. Methods Eng. 123, 3850–3878 (2022).
Zhu, F. & Zhao, J. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure. Comput. Part. Mech. 8, 1089–1101 (2021).
Pezeshkian, W. & Marrink, S. J. Simulating realistic membrane shapes. Curr. Opin. Cell Biol. 71, 103–111 (2021).
Li, B. & Abel, S. M. Membrane-mediated interactions between hinge-like particles. Soft Matter 18, 2742–2749 (2022).
Boromand, A. et al. The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. Soft Matter 15, 5854–5865 (2019).
Treado, J. D. et al. Bridging particle deformability and collective response in soft solids. Phys. Rev. Mater. 5, 055605 (2021).
Tran, S. B. Q., Le, Q. T., Leong, F. Y. & Le, D. V. Modeling deformable capsules in viscous flow using immersed boundary method. Phys. Fluids 32, 093602 (2020).
Gay Neto, A., Hudobivnik, B., Moherdaui, T. F. & Wriggers, P. Flexible polyhedra modeled by the virtual element method in a discrete element context. Comput. Methods Appl. Mech. Eng. 387, 114163 (2021).
Rahmati, S., Zuniga, A., Jodoin, B. & Veiga, R. G. A. Deformation of copper particles upon impact: a molecular dynamics study of cold spray. Comput. Mater. Sci. 171, 109219 (2020).
Liu, X. et al. Discrete element-embedded finite element model for simulation of soft particle motion and deformation. Particuology 68, 88–100 (2022).
Cardenas-Barrantes, M., Cantor, D., Bares, J., Renouf, M. & Azema, E. Micromechanical description of the compaction of soft pentagon assemblies. Phys. Rev. E 103, 062902 (2021).
Nezamabadi, S., Radjai, F., Averseng, J. & Delenne, J.-Y. Implicit frictional-contact model for soft particle systems. J. Mech. Phys. Solids 83, 72–87 (2015).
Nezamabadi, S., Ghadiri, M., Delenne, J.-Y. & Radjai, F. Modelling the compaction of plastic particle packings. Comput. Part. Mech. 9, 45–52 (2022).
Brunk, N. E., Kadupitiya, J. C. S. & Jadhao, V. Designing surface charge patterns for shape control of deformable nanoparticles. Phys. Rev. Lett. 125, 248001 (2020).
Harting, J. et al. Recent advances in the simulation of particle-laden flows. Eur. Phys. J. Spec. Top. 223, 2253–2267 (2014).
Robinson, M., Luding, S. & Ramaioli, M. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM. Int. J. Multiph. Flow 59, 121–134 (2014).
Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applications. Acta Mech. 232, 2023–2050 (2021).
Zhang, X. & Tahmasebi, P. Coupling irregular particles and fluid: complex dynamics of granular flows. Comput. Geotech. 143, 104624 (2022).
Shrestha, S., Kuang, S. B., Yu, A. B. & Zhou, Z. Y. Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. Chem. Eng. Sci. 212, 115343 (2020).
Jain, R., Tschisgale, S. & Froehlich, J. Effect of particle shape on bedload sediment transport in case of small particle loading. Meccanica 55, 299–315 (2020).
Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. Nat. Rev. Phys. 2, 181–199 (2020).
Aliu, O., Sakidin, H., Foroozesh, J. & Yahya, N. Lattice Boltzmann application to nanofluids dynamics — a review. J. Mol. Liq. 300, 112284 (2020).
de Graaf, J. et al. Lattice-Boltzmann hydrodynamics of anisotropic active matter. J. Chem. Phys. 144, 134106 (2016).
Lee, M., Lohrmann, C., Szuttor, K., Auradou, H. & Holm, C. The influence of motility on bacterial accumulation in a microporous channel. Soft Matter 17, 893–902 (2021).
Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).
Yang, L., Sega, M. & Harting, J. Capillary‐bridge forces between solid particles: insights from lattice Boltzmann simulations. AIChE J. 67, e17350 (2021).
Delenne, J.-Y., Richefeu, V. & Radjai, F. Liquid clustering and capillary pressure in granular media. J. Fluid Mech. 762, R5 (2015).
Wang, S., Wu, Q. & He, Y. Estimation of the fluidization behavior of nonspherical wet particles with liquid transfer. Ind. Eng. Chem. Res. 61, 10254–10263 (2022).
Mittal, K., Dutta, S. & Fischer, P. Direct numerical simulation of rotating ellipsoidal particles using moving nonconforming Schwarz-spectral element method. Comput. Fluids 205, 104556 (2020).
Reder, M., Hoffrogge, P. W., Schneider, D. & Nestler, B. A phase-field based model for coupling two-phase flow with the motion of immersed rigid bodies. Int. J. Numer. Methods Eng. 123, 3757–3780 (2022).
Jabeen, S., Usman, K. & Shahid, M. Numerical study of general shape particles in a concentric annular duct having inner obstacle. Comput. Part. Mech. 9, 485–497 (2022).
Peskin, C. S. The immersed boundary method. Acta Numer. 11, 479–517 (2002).
Wu, M., Peters, B., Rosemann, T. & Kruggel-Emden, H. A forcing fictitious domain method to simulate fluid–particle interaction of particles with super-quadric shape. Powder Technol. 360, 264–277 (2020).
Isoz, M., Sourek, M. K., Studenik, O. & Koci, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles. Comput. Fluids 244, 105538 (2022).
Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448–476 (2005).
Lauber, M., Weymouth, G. D. & Limbert, G. Immersed boundary simulations of flows driven by moving thin membranes. J. Comput. Phys. 457, 111076 (2022).
Yamamoto, R., Molina, J. J. & Nakayama, Y. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. Soft Matter 17, 4226–4253 (2021).
Aniello, A. et al. Comparison of a finite volume and two lattice Boltzmann solvers for swirled confined flows. Comput. Fluids 241, 105463 (2022).
Patel, K. & Stark, H. A pair of particles in inertial microfluidics: effect of shape, softness, and position. Soft Matter 17, 4804–4817 (2021).
Cheng, H., Luding, S., Rivas, N., Harting, J. & Magnanimo, V. Hydro-micromechanical modeling of wave propagation in saturated granular crystals. Int. J. Numer. Anal. Methods Geomech. 43, 1115–1139 (2019).
Lind, S. J., Rogers, B. D. & Stansby, P. K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20190801 (2020).
Canelas, R. B., Crespo, A. J. C., Domínguez, J. M., Ferreira, R. M. L. & Gómez-Gesteira, M. SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows. Comput. Phys. Commun. 202, 131–140 (2016).
Bouscasse, B., Colagrossi, A., Marrone, S. & Antuono, M. Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112–129 (2013).
Trujillo-Vela, M. G., Galindo-Torres, S. A., Zhang, X., Ramos-Cañón, A. M. & Escobar-Vargas, J. A. Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. Comput. Geotech. 125, 103669 (2020).
Peng, C., Zhan, L., Wu, W. & Zhang, B. A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. Powder Technol. 387, 509–526 (2021).
Chen, H., Zhao, S., Zhao, J. & Zhou, X. DEM-enriched contact approach for material point method. Comput. Methods Appl. Mech. Eng. 404, 115814 (2023).
Español, P. & Warren, P. B. Perspective: dissipative particle dynamics. J. Chem. Phys. 146, 150901 (2017).
Zhang, J. & Choi, C. E. Improved settling velocity for microplastic fibers: a new shape-dependent drag model. Environ. Sci. Technol. 56, 962–973 (2022).
Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016).
Yang, F., Zeng, Y.-H. & Huai, W.-X. A new model for settling velocity of non-spherical particles. Environ. Sci. Pollut. Res. 28, 61636–61646 (2021).
Castang, C., Lain, S., Garcia, D. & Sommerfeld, M. Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technol. 402, 117341 (2022).
Livi, C., Di Staso, G., Clercx, H. J. H. & Toschi, F. Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions. Phys. Rev. E 105, 015306 (2022).
Chen, S., Chen, P. & Fu, J. Drag and lift forces acting on linear and irregular agglomerates formed by spherical particles. Phys. Fluids 34, 023307 (2022).
Tagliavini, G. et al. Drag coefficient prediction of complex-shaped snow particles falling in air beyond the Stokes regime. Int. J. Multiph. Flow 140, 103652 (2021).
Dey, S., Ali, S. Z. & Padhi, E. Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190277 (2019).
Bonazzi, F., Hall, C. K. & Weikl, T. R. Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. Soft Matter 17, 268–275 (2021).
Cheng, H., Thornton, A. R., Luding, S., Hazel, A. L. & Weinhart, T. Concurrent multi-scale modeling of granular materials: role of coarse-graining in FEM–DEM coupling. Comput. Methods Appl. Mech. Eng. 403, 115651 (2023).
Xu, X., Li, C. & Gao, X. Coarse-grained DEM-CFD simulation of fluidization behavior of irregular shape sand particles. Ind. Eng. Chem. Res. 61, 9099–9109 (2022).
Yue, Y. et al. Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media. in SIGGRAPH Asia 2018 Technical Papers on — SIGGRAPH Asia ’18 1–19 (ACM Press, 2018). https://doi.org/10.1145/3272127.3275095.
Guo, N. & Zhao, J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput. Methods Appl. Mech. Eng. 305, 37–61 (2016).
Zhao, S., Zhao, J. & Lai, Y. Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete coupling approach. Comput. Methods Appl. Mech. Eng. 367, 113100 (2020).
Liang, W. & Zhao, J. Multiscale modeling of large deformation in geomechanics. Int. J. Numer. Anal. Methods Geomech. 43, 1080–1114 (2019).
Zhao, S., Zhao, J., Liang, W. & Niu, F. Multiscale modeling of coupled thermo-mechanical behavior of granular media in large deformation and flow. Comput. Geotech. 149, 104855 (2022).
Jaeggi, A., Rajagopalan, A. K., Morari, M. & Mazzotti, M. Characterizing ensembles of platelike particles via machine learning. Ind. Eng. Chem. Res. 60, 473–483 (2021).
Zhang, H. et al. Characterization of particle size and shape by an IPI system through deep learning. J. Quant. Spectrosc. Radiat. Transf. 268, 107642 (2021).
Hwang, S., Pan, J., Sunny, A. A. & Fan, L.-S. A machine learning-based particle–particle collision model for non-spherical particles with arbitrary shape. Chem. Eng. Sci. 251, 117439 (2022).
Lai, Z., Chen, Q. & Huang, L. Machine-learning-enabled discrete element method: contact detection and resolution of irregular-shaped particles. Int. J. Numer. Anal. Methods Geomech. 46, 113–140 (2022).
Yan, S.-N., Wang, T.-Y., Tang, T.-Q., Ren, A.-X. & He, Y.-R. Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient correlation based on artificial neural network. Pet. Sci. 17, 537–555 (2020).
Hwang, S., Pan, J. & Fan, L.-S. A machine learning-based interaction force model for non-spherical and irregular particles in low Reynolds number incompressible flows. Powder Technol. 392, 632–638 (2021).
Cheng, H. et al. An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput. Methods Appl. Mech. Eng. 350, 268–294 (2019).
Ma, G., Guan, S., Wang, Q., Feng, Y. T. & Zhou, W. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. Acta Geotech. 17, 3463–3478 (2022).
Wang, K. et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media. J. Comput. Phys. 443, 110526 (2021).
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Park, E. H., Kindratenko, V. & Hashash, Y. M. A. Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations. Comput. Geotech. 137, 104008 (2021).
Gao, X., Yu, J., Lu, L., Li, C. & Rogers, W. A. Development and validation of SuperDEM–CFD coupled model for simulating non-spherical particles hydrodynamics in fluidized beds. Chem. Eng. J. 420, 127654 (2021).
Wu, C. et al. System-level modeling of GPU/FPGA clusters for molecular dynamics simulations. in 2021 IEEE High Performance Extreme Computing Conference (HPEC) 1–8 (IEEE, 2021). https://doi.org/10.1109/HPEC49654.2021.9622838.
Weinhart, T., Fuchs, R., Staedler, T., Kappl, M. & Luding, S. Sintering — pressure- and temperature-dependent contact models. in Particles in Contact (ed. Antonyuk, S.) 311–338 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-15899-6_10.
Taghizadeh, K., Steeb, H., Luding, S. & Magnanimo, V. Elastic waves in particulate glass–rubber mixtures. Proc. R. Soc. A Math. Phys. Eng. Sci. 477, 20200834 (2021).
Luding, S. Introduction to discrete element methods. Eur. J. Environ. Civ. Eng. 12, 785–826 (2008).
Angelidakis, V., Nadimi, S., Otsubo, M. & Utili, S. CLUMP: a code library to generate universal multi-sphere particles. SoftwareX 15, 100735 (2021).
Ferellec, J. & McDOWELL, G. Modelling realistic shape and particle inertia in DEM. Géotechnique 60, 227–232 (2010).
Zhao, S., Chen, H. & Zhao, J. Multiscale modeling of freeze–thaw behavior in granular media. Acta Mech. Sin. 39, 722195 (2023).
Zhao, S. & Zhao, J. SudoDEM: unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles. Comput. Phys. Commun. 259, 107670 (2021).
Ye, T., Phan-Thien, N. & Lim, C. T. Particle-based simulations of red blood cells — a review. J. Biomech. 49, 2255–2266 (2016).
Nagata, T. et al. A simple collision algorithm for arbitrarily shaped objects in particle-resolved flow simulation using an immersed boundary method. Int. J. Numer. Methods Fluids 92, 1256–1273 (2020).
Acknowledgements
J.Z. and S.Z. acknowledge the financial supports from the National Natural Science Foundation of China (via Project Nos 11972030 and 51909095) and Research Grants Council of Hong Kong (GRF Projects Nos 16206322, 16208720 and 16211221 and F-HKUST601/19). J.Z. also acknowledges the supports by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083) and the internal research supports provided by HKUST (FP907, IEG22EG01 and IEG22EG01PG).
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of manuscript preparation, revision and editing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Devang Khakhar, Farhang Radjai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, J., Zhao, S. & Luding, S. The role of particle shape in computational modelling of granular matter. Nat Rev Phys 5, 505–525 (2023). https://doi.org/10.1038/s42254-023-00617-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00617-9
- Springer Nature Limited
This article is cited by
-
Exploring the collision, acoustic and thermal energy dissipation distribution of discrete mass
Scientific Reports (2024)
-
The effect of particle shape on the dynamics of spherical projectile impacting into granular media
Computational Particle Mechanics (2024)
-
New crushing criterion invariant to the coordination number effect in discrete element modelling
Acta Geotechnica (2024)
-
Effects of angularity and content of coarse particles on the mechanical behaviour of granular mixtures: a DEM study
Granular Matter (2024)
-
Microscopic mechanical analysis of K0 of granular soils with particle size distribution and rolling resistance effects
Computational Particle Mechanics (2024)