Skip to main content
Log in

The role of particle shape in computational modelling of granular matter

  • Technical Review
  • Published:

From Nature Reviews Physics

View current issue Sign up to alerts

Abstract

Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time. Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal features of granular matter and some unique approaches developed for special but important applications.

Key points

  • Particle-based computational modelling that considers realistic particle shapes has become indispensable for understanding and predicting the complex behaviour of granular matter in engineering, industry and nature.

  • How to effectively represent the shape of a particle is closely related to its intended purpose; the modelling of naturally occurring granular materials may differ from approaches for engineered particles.

  • Particle shape representation is inseparably coupled to the detection of interparticle contacts, both of which critically determine the computational accuracy and efficiency of simulations of granular matter.

  • Specific methodologies are needed to address challenges arising from crushable particles or highly deformable particles, in which the co-evolution of particle shapes and sizes and hence contact detection algorithms dictate both accuracy and efficiency.

  • Consideration of shape effects in coupled simulations of granular particles and environmental fluids requires revamped theories and methods to faithfully reflect their underpinning multiphase, multiphysics nature.

  • Incorporating realistic particle shapes in granular matter modelling must harness the latest advances in parallel computing and machine learning for effective large-scale computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Modelling realistic complex particles and their collective behaviours.
Fig. 2: Numerical models on particle shape representation.
Fig. 3: Computational approaches for large-scale and multiscale modelling.

Similar content being viewed by others

References

  1. Marzinek, J. K., Huber, R. G. & Bond, P. J. Multiscale modelling and simulation of viruses. Curr. Opin. Struct. Biol. 61, 146–152 (2020).

    Article  Google Scholar 

  2. Zong, Y. & Zhao, K. Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D. Curr. Opin. Solid State Mater. Sci. 26, 101022 (2022).

    Article  ADS  Google Scholar 

  3. Voss, J. & Wittkowski, R. On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. Nanoscale Adv. 2, 3890–3899 (2020).

    Article  ADS  Google Scholar 

  4. Wang, J. et al. Shape matters: morphologically biomimetic particles for improved drug delivery. Chem. Eng. J. 410, 127849 (2021).

    Article  Google Scholar 

  5. Luo, X., Wang, Z., Yang, L., Gao, T. & Zhang, Y. A review of analytical methods and models used in atmospheric microplastic research. Sci. Total Environ. 828, 154487 (2022).

    Article  ADS  Google Scholar 

  6. Mollon, G. & Zhao, J. Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15, 95–108 (2013).

    Article  Google Scholar 

  7. Su, Y. et al. Determination and interpretation of bonded-particle model parameters for simulation of maize kernels. Biosyst. Eng. 210, 193–205 (2021).

    Article  Google Scholar 

  8. Ghadiri, M. et al. Cohesive powder flow: trends and challenges in characterisation and analysis. KONA Powder Part. J. https://doi.org/10.14356/kona.2020018 (2020).

    Article  Google Scholar 

  9. Piton, G., Goodwin, S. R., Mark, E. & Strouth, A. Debris flows, boulders and constrictions: a simple framework for modeling jamming, and its consequences on outflow. J. Geophys. Res. Earth Surf. 127, e2021JF006447 (2022).

    Article  ADS  Google Scholar 

  10. Rackow, T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Ocean 122, 3170–3190 (2017).

    Article  ADS  Google Scholar 

  11. Ferrari, F. & Tanga, P. The role of fragment shapes in the simulations of asteroids as gravitational aggregates. Icarus 350, 113871 (2020).

    Article  Google Scholar 

  12. Shi, L., Zhao, W., Sun, B. & Sun, W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. Int. J. Agric. Biol. Eng. 13, 15–25 (2020).

    Google Scholar 

  13. Cui, X., Gui, N., Yang, X., Tu, J. & Jiang, S. Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core. Nucl. Eng. Des. 371, 110934 (2021).

    Article  Google Scholar 

  14. Tang, X. & Yang, J. Wave propagation in granular material: what is the role of particle shape? J. Mech. Phys. Solids 157, 104605 (2021).

    Article  MathSciNet  Google Scholar 

  15. Jones, R. P., Ottino, J. M., Umbanhowar, P. B. & Lueptow, R. M. Predicting segregation of nonspherical particles. Phys. Rev. Fluids 6, 054301 (2021).

    Article  ADS  Google Scholar 

  16. Xia, Y. et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation. Biosyst. Eng. 205, 187–211 (2021).

    Article  Google Scholar 

  17. Zhang, R., Ku, X., Yang, S., Wang, J. & Fan, L. Modeling and simulation of the motion and gasification behaviors of superellipsoidal biomass particles in an entrained-flow reactor. Energy Fuels 35, 1488–1502 (2021).

    Article  Google Scholar 

  18. Leisner, A. M., Richardson, D. C., Statler, T. S., Nichols, W. & Zhang, Y. An extended parameter space study of the effect of cohesion in gravitational aggregates through spin-up simulations. Planet. Space Sci. 182, 104845 (2020).

    Article  Google Scholar 

  19. Wang, F., Liu, J. & Zeng, H. Interactions of particulate matter and pulmonary surfactant: implications for human health. Adv. Colloid Interface Sci. 284, 102244 (2020).

    Article  Google Scholar 

  20. Wang, Y., Li, L., Hofmann, D., Andrade, J. E. & Daraio, C. Structured fabrics with tunable mechanical properties. Nature 596, 238 (2021).

    Article  ADS  Google Scholar 

  21. Keller, S. & Jaeger, H. M. Aleatory architectures. Granul. Matter 18, 29 (2016).

    Article  Google Scholar 

  22. Dierichs, K. & Menges, A. Designing architectural materials: from granular form to functional granular material. Bioinspir. Biomim. 16, 065010 (2021).

    Article  ADS  Google Scholar 

  23. Nunzi, F. & Angelis, F. D. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci. 13, 9485–9497 (2022).

    Article  Google Scholar 

  24. Ostanin, I., Ballarini, R., Potyondy, D. & Dumitrică, T. A distinct element method for large scale simulations of carbon nanotube assemblies. J. Mech. Phys. Solids 61, 762–782 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. Gentili, D. & Ori, G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. Nanoscale 14, 14385–14432 (2022).

    Article  Google Scholar 

  26. Li, Z., Yang, F. & Yin, Y. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater. 30, 1903467 (2020).

    Article  Google Scholar 

  27. Sveinsson, H. A. et al. Direct atomic simulations of facet formation and equilibrium shapes of SiC nanoparticles. Cryst. Growth Des. 20, 2147–2152 (2020).

    Article  Google Scholar 

  28. Espinosa, I. M. P., Jacobs, T. D. B. & Martini, A. Atomistic simulations of the elastic compression of platinum nanoparticles. Nanoscale Res. Lett. 17, 96 (2022).

    Article  ADS  Google Scholar 

  29. Voss, J. & Wittkowski, R. Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves. Phys. Fluids 34, 052007 (2022).

    Article  ADS  Google Scholar 

  30. Wang, C. & Jiang, H. Different-shaped micro-objects driven by active particle aggregations. Soft Matter 16, 4422–4430 (2020).

    Article  ADS  Google Scholar 

  31. Chen, G. et al. Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat. Commun. 13, 5549 (2022).

    Article  ADS  Google Scholar 

  32. Palanisamy, D. & den Otter, W. K. Intrinsic viscosities of non-spherical colloids by Brownian dynamics simulations. J. Chem. Phys. 151, 184902 (2019).

    Article  ADS  Google Scholar 

  33. Chakrapani, T. H., Bazyar, H., Lammertink, R. G. H., Luding, S. & Otter, W. Kden The permeability of pillar arrays in microfluidic devices: an application of Brinkman’s theory towards wall friction. Soft Matter 19, 436–450 (2023).

    Article  ADS  Google Scholar 

  34. Schoenhoefer, P. W. A., Marechal, M., Cleaver, D. J. & Schroeder-Turk, G. E. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction of pear-shaped particles in a hard-sphere solvent. J. Chem. Phys. 153, 034904 (2020).

    Article  Google Scholar 

  35. Rosenberg, M., Dekker, F., Donaldson, J. G., Philipse, A. P. & Kantorovich, S. S. Self-assembly of charged colloidal cubes. Soft Matter 16, 4451–4461 (2020).

    Article  ADS  Google Scholar 

  36. Mistry, A., Heenan, T., Smith, K., Shearing, P. & Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. ACS Energy Lett. 7, 1871–1879 (2022).

    Article  Google Scholar 

  37. Li, L., Wang, J., Yang, S. & Klein, B. A voxel-based clump generation method used for DEM simulations. Granul. Matter 24, 89 (2022).

    Article  Google Scholar 

  38. Huet, D. P., Jalaal, M., van Beek, R., van der Meer, D. & Wachs, A. Granular avalanches of entangled rigid particles. Phys. Rev. Fluids 6, 104304 (2021).

    Article  ADS  Google Scholar 

  39. Feng, Y. T. Thirty years of developments in contact modelling of non-spherical particles in DEM: a selective review. Acta Mech. Sin. 39, 722343 (2023).

    Article  MathSciNet  Google Scholar 

  40. Neto, A. G. & Wriggers, P. Discrete element model for general polyhedra. Comput. Part. Mech. 9, 353–380 (2022).

    Article  Google Scholar 

  41. Zhang, R., Ku, X. & Lin, J. Fluidization of the spherocylindrical particles: comparison of multi-sphere and bond-sphere models. Chem. Eng. Sci. 253, 117540 (2022).

    Article  Google Scholar 

  42. Alonso-Marroqun, F. Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008).

    Article  ADS  Google Scholar 

  43. Liu, L. & Ji, S. A new contact detection method for arbitrary dilated polyhedra with potential function in discrete element method. Int. J. Numer. Methods Eng. 121, 5742–5765 (2020).

    Article  MathSciNet  Google Scholar 

  44. Shao, L., Mao, J., Zhao, L. & Li, T. A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process. Eng. Fract. Mech. 263, 108290 (2022).

    Article  Google Scholar 

  45. Delaney, G. W. & Cleary, P. W. The packing properties of superellipsoids. Europhys. Lett. 89, 34002 (2010).

    Article  ADS  Google Scholar 

  46. Wellmann, C., Lillie, C. & Wriggers, P. A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25, 432–442 (2008).

    Article  MATH  Google Scholar 

  47. Zhao, S., Zhang, N., Zhou, X. & Zhang, L. Particle shape effects on fabric of granular random packing. Powder Technol. 310, 175–186 (2017).

    Article  Google Scholar 

  48. Peters, J. F., Hopkins, M. A., Kala, R. & Wahl, R. E. A poly‐ellipsoid particle for non‐spherical discrete element method. Eng. Comput. 26, 645–657 (2009).

    Article  Google Scholar 

  49. Zhang, B., Regueiro, R., Druckrey, A. & Alshibli, K. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm. Eng. Comput. 35, 733–771 (2018).

    Article  Google Scholar 

  50. Zhao, S. & Zhao, J. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43, 2147–2169 (2019).

    Article  Google Scholar 

  51. Lai, Z. & Huang, L. A polybézier-based particle model for the DEM modeling of granular media. Comput. Geotech. 134, 104052 (2021).

    Article  Google Scholar 

  52. Zhang, P., Dong, Y., Galindo-Torres, S. A., Scheuermann, A. & Li, L. Metaball based discrete element method for general shaped particles with round features. Comput. Mech. 67, 1243–1254 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  53. Craveiro, M. V., Neto, A. G. & Wriggers, P. Contact between rigid convex NURBS particles based on computer graphics concepts. Comput. Methods Appl. Mech. Eng. 386, 114097 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Lim, K.-W., Krabbenhoft, K. & Andrade, J. E. On the contact treatment of non-convex particles in the granular element method. Comp. Part. Mech. 1, 257–275 (2014).

    Article  Google Scholar 

  55. Mollon, G. & Zhao, J. 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014).

    Article  ADS  MATH  Google Scholar 

  56. Zhou, B. & Wang, J. Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis: generation of a realistic 3D sand assembly. Int. J. Numer. Anal. Meth. Geomech. 41, 93–109 (2017).

    Article  Google Scholar 

  57. Sun, Q. & Zheng, J. Clone granular soils with mixed particle morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process. Acta Geotech. 15, 2779–2796 (2020).

    Article  Google Scholar 

  58. Bardhan, J. P. & Knepley, M. G. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory. Comput. Sci. Disc. 5, 014006 (2012).

    Article  Google Scholar 

  59. Klotz, T. S., Bardhan, J. P. & Knepley, M. G. Efficient evaluation of ellipsoidal harmonics for potential modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.1708.06028 (2017).

  60. Reimond, S. & Baur, O. Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System bodies. Case study: comet 67P/Churyumov-Gerasimenko: gravitational potential of small bodies. J. Geophys. Res. Planets 121, 497–515 (2016).

    Article  ADS  Google Scholar 

  61. Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979).

    Article  Google Scholar 

  62. Smallenburg, F. Efficient event-driven simulations of hard spheres. Eur. Phys. J. E 45, 22 (2022).

    Article  Google Scholar 

  63. Cantor, D., Azema, E. & Preechawuttipong, I. Microstructural analysis of sheared polydisperse polyhedral grains. Phys. Rev. E 101, 062901 (2020).

    Article  ADS  Google Scholar 

  64. Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech. 230, 1919–1980 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  65. Radjai, F. & Richefeu, V. Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 715–728 (2009).

    Article  Google Scholar 

  66. Dubois, F., Acary, V. & Jean, M. The contact dynamics method: a nonsmooth story. C. R. Méc. 346, 247–262 (2018).

    Article  ADS  Google Scholar 

  67. Hahn, J. K. Realistic animation of rigid bodies. SIGGRAPH Comput. Graph. 22, 299–308 (1988).

    Article  Google Scholar 

  68. Tang, X., Paluszny, A. & Zimmerman, R. W. An impulse-based energy tracking method for collision resolution. Comput. Methods Appl. Mech. Eng. 278, 160–185 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Lee, S. J. & Hashash, Y. M. A. iDEM: an impulse‐based discrete element method for fast granular dynamics. Int. J. Numer. Methods Eng. 104, 79–103 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  70. Jehser, M. & Likos, C. N. Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. Colloid Polym. Sci. 298, 735–745 (2020).

    Article  Google Scholar 

  71. Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids. J. Comput. Phys. 202, 765–793 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  72. Skora, T., Vaghefikia, F., Fitter, J. & Kondrat, S. Macromolecular crowding: how shape and interactions affect diffusion. J. Phys. Chem. B 124, 7537–7543 (2020).

    Article  Google Scholar 

  73. Baldauf, L., Teich, E. G., Schall, P., van Anders, G. & Rossi, L. Shape and interaction decoupling for colloidal preassembly. Sci. Adv. 8, eabm0548 (2022).

    Article  Google Scholar 

  74. Chiappini, M. & Dijkstra, M. A generalized density-modulated twist-splay-bend phase of banana-shaped particles. Nat. Commun. 12, 2157 (2021).

    Article  ADS  Google Scholar 

  75. Pal, A. et al. Shape matters in magnetic-field-assisted assembly of prolate colloids. ACS Nano 16, 2558–2568 (2022).

    Article  Google Scholar 

  76. Ferrari, F., Lavagna, M. & Blazquez, E. A parallel-GPU code for asteroid aggregation problems with angular particles. Mon. Not. Roy. Astron. Soc. 492, 749–761 (2020).

    Article  ADS  Google Scholar 

  77. Zhao, S., Lai, Z. & Zhao, J. Leveraging ray tracing cores for particle‐based simulations on GPUs. Int. J. Numer. Methods Eng. 124, 696–713 (2022).

    Article  MathSciNet  Google Scholar 

  78. Howard, M. P., Anderson, J. A., Nikoubashman, A., Glotzer, S. C. & Panagiotopoulos, A. Z. Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units. Comput. Phys. Commun. 203, 45–52 (2016).

    Article  ADS  Google Scholar 

  79. Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202, 737–764 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Girault, I., Chadil, M.-A. & Vincent, S. Comparison of methods computing the distance between two ellipsoids. J. Comput. Phys. 458, 111100 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  81. Eliáš, J. Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014).

    Article  Google Scholar 

  82. Zhao, S., Zhou, X. & Liu, W. Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17, 793–806 (2015).

    Article  Google Scholar 

  83. Günther, O. & Wong, E. A dual approach to detect polyhedral intersections in arbitrary dimensions. BIT Numer. Math. 31, 2–14 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  84. Feng, Y. T. An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification. Comput. Methods Appl. Mech. Eng. 379, 113750 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Lai, Z., Chen, Q. & Huang, L. Fourier series-based discrete element method for computational mechanics of irregular-shaped particles. Comput. Methods Appl. Mech. Eng. 362, 112873 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. He, H. & Zheng, J. Simulations of realistic granular soils in oedometer tests using physics engine. Int. J. Numer. Anal. Methods Geomech. 44, 983–1002 (2020).

    Article  Google Scholar 

  87. Zhu, F. & Zhao, J. Modeling continuous grain crushing in granular media: a hybrid peridynamics and physics engine approach. Comput. Methods Appl. Mech. Eng. 348, 334–355 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. A mean-field approach to simulating anisotropic particles. J. Chem. Phys. 153, 084106 (2020).

    Article  Google Scholar 

  89. Lubachevsky, B. D. & Stillinger, F. H. Geometric properties of random disk packings. J. Stat. Phys. 60, 561–583 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Maher, C. E., Stillinger, F. H. & Torquato, S. Characterization of void space, large-scale structure, and transport properties of maximally random jammed packings of superballs. Phys. Rev. Mater. 6, 025603 (2022).

    Article  Google Scholar 

  91. Cundall, P. A. Formulation of a three-dimensional distinct element model — part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 107–116 (1988).

    Article  Google Scholar 

  92. Nezami, E. G., Hashash, Y. M. A., Zhao, D. W. & Ghaboussi, J. A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004).

    Article  Google Scholar 

  93. Azéma, E., Radjai, F. & Dubois, F. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013).

    Article  ADS  Google Scholar 

  94. Zhan, L., Peng, C., Zhang, B. & Wu, W. A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. Powder Technol. 377, 760–779 (2021).

    Article  Google Scholar 

  95. Capozza, R. & Hanley, K. J. A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM. Powder Technol. 378, 528–537 (2021).

    Article  Google Scholar 

  96. Wang, X., Yin, Z.-Y., Xiong, H., Su, D. & Feng, Y.-T. A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles. Int. J. Numer. Methods Eng. 122, 5626–5655 (2021).

    Article  MathSciNet  Google Scholar 

  97. Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  98. Harmon, J. M., Arthur, D. & Andrade, J. E. Level set splitting in DEM for modeling breakage mechanics. Comput. Methods Appl. Mech. Eng. 365, 112961 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Duriez, J. & Galusinski, C. A level set-discrete element method in YADE for numerical, micro-scale, geomechanics with refined grain shapes. Comput. Geosci. 157, 104936 (2021).

    Article  Google Scholar 

  100. Lai, Z., Zhao, S., Zhao, J. & Huang, L. Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes. Comput. Mech. 70, 763–783 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  101. Mori, Y. & Sakai, M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer. Chem. Eng. J. 429, 132415 (2022).

    Article  Google Scholar 

  102. Huang, S., Huang, L., Lai, Z. & Zhao, J. Morphology characterization and discrete element modeling of coral sand with intraparticle voids. Eng. Geol. 315, 107023 (2023).

    Article  Google Scholar 

  103. Feng, Y. T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general contact model. Comput. Methods Appl. Mech. Eng. 373, 113454 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Hoque, S. Z., Anand, D. V. & Patnaik, B. S. A dissipative particle dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel. Comput. Part. Mech. 9, 1219–1231 (2022).

    Article  Google Scholar 

  105. Villone, M. M. & Maffettone, P. L. Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. Rheol. Acta 58, 109–130 (2019).

    Article  Google Scholar 

  106. Norouzi, M., Andric, J., Vernet, A. & Pallares, J. Shape evolution of long flexible fibers in viscous flows. Acta Mech. 233, 2077–2091 (2022).

    Article  MATH  Google Scholar 

  107. Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).

    Article  Google Scholar 

  108. Tavares, L. M. & das Chagas, A. S. A stochastic particle replacement strategy for simulating breakage in DEM. Powder Technol. 377, 222–232 (2021).

    Article  Google Scholar 

  109. Jiang, Y., Mora, P., Herrmann, H. J. & Alonso-Marroquín, F. Damage separation model: a replaceable particle method based on strain energy field. Phys. Rev. E 104, 045311 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  110. Orozco, L. F., Delenne, J.-Y., Sornay, P. & Radjai, F. Scaling behavior of particle breakage in granular flows inside rotating drums. Phys. Rev. E 101, 052904 (2020).

    Article  ADS  Google Scholar 

  111. Ramkrishna, D. & Singh, M. R. Population balance modeling: current status and future prospects. Annu. Rev. Chem. Biomol. Eng. 5, 123–146 (2014).

    Article  Google Scholar 

  112. Cabiscol, R., Finke, J. H. & Kwade, A. A bi-directional DEM-PBM coupling to evaluate chipping and abrasion of pharmaceutical tablets. Adv. Powder Technol. 32, 2839–2855 (2021).

    Article  Google Scholar 

  113. Kuang, D.-M., Long, Z.-L., Ogwu, I. & Chen, Z. A discrete element method (DEM)-based approach to simulating particle breakage. Acta Geotech. 17, 2751–2764 (2022).

    Article  Google Scholar 

  114. Fang, C., Gong, J., Nie, Z., Li, B. & Li, X. DEM study on the microscale and macroscale shear behaviours of granular materials with breakable and irregularly shaped particles. Comput. Geotech. 137, 104271 (2021).

    Article  Google Scholar 

  115. Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Bonded-cell model for particle fracture. Phys. Rev. E 91, 022203 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  116. Cantor, D., Azéma, E., Sornay, P. & Radjai, F. Three-dimensional bonded-cell model for grain fragmentation. Comp. Part. Mech. 4, 441–450 (2017).

    Article  Google Scholar 

  117. Nikolić, M., Karavelić, E., Ibrahimbegovic, A. & Miščević, P. Lattice element models and their peculiarities. Arch. Comput. Methods Eng. 25, 753–784 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  118. Delenne, J.-Y., Topin, V. & Radjai, F. Failure of cemented granular materials under simple compression: experiments and numerical simulations. Acta Mech. 205, 9–21 (2009).

    Article  MATH  Google Scholar 

  119. Affes, R., Delenne, J.-Y., Monerie, Y., Radjaï, F. & Topin, V. Tensile strength and fracture of cemented granular aggregates. Eur. Phys. J. E 35, 117 (2012).

    Article  Google Scholar 

  120. Topin, V., Radjaï, F., Delenne, J.-Y. & Mabille, F. Mechanical modeling of wheat hardness and fragmentation. Powder Technol. 190, 215–220 (2009).

    Article  Google Scholar 

  121. Sargado, J. M., Keilegavlen, E., Berre, I. & Nordbotten, J. M. A combined finite element–finite volume framework for phase-field fracture. Comput. Methods Appl. Mech. Eng. 373, 113474 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Rahimi, M. N. & Moutsanidis, G. A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. Comput. Methods Appl. Mech. Eng. 398, 115191 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Mohajerani, S. & Wang, G. ‘Touch-aware’ contact model for peridynamics modeling of granular systems. Int. J. Numer. Methods Eng. 123, 3850–3878 (2022).

    Article  MathSciNet  Google Scholar 

  124. Zhu, F. & Zhao, J. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure. Comput. Part. Mech. 8, 1089–1101 (2021).

    Article  Google Scholar 

  125. Pezeshkian, W. & Marrink, S. J. Simulating realistic membrane shapes. Curr. Opin. Cell Biol. 71, 103–111 (2021).

    Article  Google Scholar 

  126. Li, B. & Abel, S. M. Membrane-mediated interactions between hinge-like particles. Soft Matter 18, 2742–2749 (2022).

    Article  ADS  Google Scholar 

  127. Boromand, A. et al. The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. Soft Matter 15, 5854–5865 (2019).

    Article  ADS  Google Scholar 

  128. Treado, J. D. et al. Bridging particle deformability and collective response in soft solids. Phys. Rev. Mater. 5, 055605 (2021).

    Article  Google Scholar 

  129. Tran, S. B. Q., Le, Q. T., Leong, F. Y. & Le, D. V. Modeling deformable capsules in viscous flow using immersed boundary method. Phys. Fluids 32, 093602 (2020).

    Article  ADS  Google Scholar 

  130. Gay Neto, A., Hudobivnik, B., Moherdaui, T. F. & Wriggers, P. Flexible polyhedra modeled by the virtual element method in a discrete element context. Comput. Methods Appl. Mech. Eng. 387, 114163 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. Rahmati, S., Zuniga, A., Jodoin, B. & Veiga, R. G. A. Deformation of copper particles upon impact: a molecular dynamics study of cold spray. Comput. Mater. Sci. 171, 109219 (2020).

    Article  Google Scholar 

  132. Liu, X. et al. Discrete element-embedded finite element model for simulation of soft particle motion and deformation. Particuology 68, 88–100 (2022).

    Article  Google Scholar 

  133. Cardenas-Barrantes, M., Cantor, D., Bares, J., Renouf, M. & Azema, E. Micromechanical description of the compaction of soft pentagon assemblies. Phys. Rev. E 103, 062902 (2021).

    Article  ADS  Google Scholar 

  134. Nezamabadi, S., Radjai, F., Averseng, J. & Delenne, J.-Y. Implicit frictional-contact model for soft particle systems. J. Mech. Phys. Solids 83, 72–87 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Nezamabadi, S., Ghadiri, M., Delenne, J.-Y. & Radjai, F. Modelling the compaction of plastic particle packings. Comput. Part. Mech. 9, 45–52 (2022).

    Article  Google Scholar 

  136. Brunk, N. E., Kadupitiya, J. C. S. & Jadhao, V. Designing surface charge patterns for shape control of deformable nanoparticles. Phys. Rev. Lett. 125, 248001 (2020).

    Article  ADS  Google Scholar 

  137. Harting, J. et al. Recent advances in the simulation of particle-laden flows. Eur. Phys. J. Spec. Top. 223, 2253–2267 (2014).

    Article  Google Scholar 

  138. Robinson, M., Luding, S. & Ramaioli, M. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM. Int. J. Multiph. Flow 59, 121–134 (2014).

    Article  Google Scholar 

  139. Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applications. Acta Mech. 232, 2023–2050 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  140. Zhang, X. & Tahmasebi, P. Coupling irregular particles and fluid: complex dynamics of granular flows. Comput. Geotech. 143, 104624 (2022).

    Article  Google Scholar 

  141. Shrestha, S., Kuang, S. B., Yu, A. B. & Zhou, Z. Y. Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. Chem. Eng. Sci. 212, 115343 (2020).

    Article  Google Scholar 

  142. Jain, R., Tschisgale, S. & Froehlich, J. Effect of particle shape on bedload sediment transport in case of small particle loading. Meccanica 55, 299–315 (2020).

    Article  MathSciNet  Google Scholar 

  143. Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. Nat. Rev. Phys. 2, 181–199 (2020).

    Article  Google Scholar 

  144. Aliu, O., Sakidin, H., Foroozesh, J. & Yahya, N. Lattice Boltzmann application to nanofluids dynamics — a review. J. Mol. Liq. 300, 112284 (2020).

    Article  Google Scholar 

  145. de Graaf, J. et al. Lattice-Boltzmann hydrodynamics of anisotropic active matter. J. Chem. Phys. 144, 134106 (2016).

    Article  ADS  Google Scholar 

  146. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H. & Holm, C. The influence of motility on bacterial accumulation in a microporous channel. Soft Matter 17, 893–902 (2021).

    Article  ADS  Google Scholar 

  147. Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).

    Article  ADS  Google Scholar 

  148. Yang, L., Sega, M. & Harting, J. Capillary‐bridge forces between solid particles: insights from lattice Boltzmann simulations. AIChE J. 67, e17350 (2021).

    Article  Google Scholar 

  149. Delenne, J.-Y., Richefeu, V. & Radjai, F. Liquid clustering and capillary pressure in granular media. J. Fluid Mech. 762, R5 (2015).

    Article  MathSciNet  Google Scholar 

  150. Wang, S., Wu, Q. & He, Y. Estimation of the fluidization behavior of nonspherical wet particles with liquid transfer. Ind. Eng. Chem. Res. 61, 10254–10263 (2022).

    Article  Google Scholar 

  151. Mittal, K., Dutta, S. & Fischer, P. Direct numerical simulation of rotating ellipsoidal particles using moving nonconforming Schwarz-spectral element method. Comput. Fluids 205, 104556 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  152. Reder, M., Hoffrogge, P. W., Schneider, D. & Nestler, B. A phase-field based model for coupling two-phase flow with the motion of immersed rigid bodies. Int. J. Numer. Methods Eng. 123, 3757–3780 (2022).

    Article  MathSciNet  Google Scholar 

  153. Jabeen, S., Usman, K. & Shahid, M. Numerical study of general shape particles in a concentric annular duct having inner obstacle. Comput. Part. Mech. 9, 485–497 (2022).

    Article  Google Scholar 

  154. Peskin, C. S. The immersed boundary method. Acta Numer. 11, 479–517 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  155. Wu, M., Peters, B., Rosemann, T. & Kruggel-Emden, H. A forcing fictitious domain method to simulate fluid–particle interaction of particles with super-quadric shape. Powder Technol. 360, 264–277 (2020).

    Article  Google Scholar 

  156. Isoz, M., Sourek, M. K., Studenik, O. & Koci, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles. Comput. Fluids 244, 105538 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  157. Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448–476 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Lauber, M., Weymouth, G. D. & Limbert, G. Immersed boundary simulations of flows driven by moving thin membranes. J. Comput. Phys. 457, 111076 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  159. Yamamoto, R., Molina, J. J. & Nakayama, Y. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. Soft Matter 17, 4226–4253 (2021).

    Article  ADS  Google Scholar 

  160. Aniello, A. et al. Comparison of a finite volume and two lattice Boltzmann solvers for swirled confined flows. Comput. Fluids 241, 105463 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  161. Patel, K. & Stark, H. A pair of particles in inertial microfluidics: effect of shape, softness, and position. Soft Matter 17, 4804–4817 (2021).

    Article  ADS  Google Scholar 

  162. Cheng, H., Luding, S., Rivas, N., Harting, J. & Magnanimo, V. Hydro-micromechanical modeling of wave propagation in saturated granular crystals. Int. J. Numer. Anal. Methods Geomech. 43, 1115–1139 (2019).

    Article  Google Scholar 

  163. Lind, S. J., Rogers, B. D. & Stansby, P. K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20190801 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  164. Canelas, R. B., Crespo, A. J. C., Domínguez, J. M., Ferreira, R. M. L. & Gómez-Gesteira, M. SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows. Comput. Phys. Commun. 202, 131–140 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  165. Bouscasse, B., Colagrossi, A., Marrone, S. & Antuono, M. Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112–129 (2013).

    Article  ADS  Google Scholar 

  166. Trujillo-Vela, M. G., Galindo-Torres, S. A., Zhang, X., Ramos-Cañón, A. M. & Escobar-Vargas, J. A. Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. Comput. Geotech. 125, 103669 (2020).

    Article  Google Scholar 

  167. Peng, C., Zhan, L., Wu, W. & Zhang, B. A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. Powder Technol. 387, 509–526 (2021).

    Article  Google Scholar 

  168. Chen, H., Zhao, S., Zhao, J. & Zhou, X. DEM-enriched contact approach for material point method. Comput. Methods Appl. Mech. Eng. 404, 115814 (2023).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Español, P. & Warren, P. B. Perspective: dissipative particle dynamics. J. Chem. Phys. 146, 150901 (2017).

    Article  ADS  Google Scholar 

  170. Zhang, J. & Choi, C. E. Improved settling velocity for microplastic fibers: a new shape-dependent drag model. Environ. Sci. Technol. 56, 962–973 (2022).

    Article  ADS  Google Scholar 

  171. Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016).

    Article  Google Scholar 

  172. Yang, F., Zeng, Y.-H. & Huai, W.-X. A new model for settling velocity of non-spherical particles. Environ. Sci. Pollut. Res. 28, 61636–61646 (2021).

    Article  Google Scholar 

  173. Castang, C., Lain, S., Garcia, D. & Sommerfeld, M. Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technol. 402, 117341 (2022).

    Article  Google Scholar 

  174. Livi, C., Di Staso, G., Clercx, H. J. H. & Toschi, F. Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions. Phys. Rev. E 105, 015306 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  175. Chen, S., Chen, P. & Fu, J. Drag and lift forces acting on linear and irregular agglomerates formed by spherical particles. Phys. Fluids 34, 023307 (2022).

    Article  ADS  Google Scholar 

  176. Tagliavini, G. et al. Drag coefficient prediction of complex-shaped snow particles falling in air beyond the Stokes regime. Int. J. Multiph. Flow 140, 103652 (2021).

    Article  Google Scholar 

  177. Dey, S., Ali, S. Z. & Padhi, E. Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190277 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  178. Bonazzi, F., Hall, C. K. & Weikl, T. R. Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. Soft Matter 17, 268–275 (2021).

    Article  ADS  Google Scholar 

  179. Cheng, H., Thornton, A. R., Luding, S., Hazel, A. L. & Weinhart, T. Concurrent multi-scale modeling of granular materials: role of coarse-graining in FEM–DEM coupling. Comput. Methods Appl. Mech. Eng. 403, 115651 (2023).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  180. Xu, X., Li, C. & Gao, X. Coarse-grained DEM-CFD simulation of fluidization behavior of irregular shape sand particles. Ind. Eng. Chem. Res. 61, 9099–9109 (2022).

    Article  Google Scholar 

  181. Yue, Y. et al. Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media. in SIGGRAPH Asia 2018 Technical Papers on — SIGGRAPH Asia ’18 1–19 (ACM Press, 2018). https://doi.org/10.1145/3272127.3275095.

  182. Guo, N. & Zhao, J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput. Methods Appl. Mech. Eng. 305, 37–61 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. Zhao, S., Zhao, J. & Lai, Y. Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete coupling approach. Comput. Methods Appl. Mech. Eng. 367, 113100 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Liang, W. & Zhao, J. Multiscale modeling of large deformation in geomechanics. Int. J. Numer. Anal. Methods Geomech. 43, 1080–1114 (2019).

    Article  Google Scholar 

  185. Zhao, S., Zhao, J., Liang, W. & Niu, F. Multiscale modeling of coupled thermo-mechanical behavior of granular media in large deformation and flow. Comput. Geotech. 149, 104855 (2022).

    Article  Google Scholar 

  186. Jaeggi, A., Rajagopalan, A. K., Morari, M. & Mazzotti, M. Characterizing ensembles of platelike particles via machine learning. Ind. Eng. Chem. Res. 60, 473–483 (2021).

    Article  Google Scholar 

  187. Zhang, H. et al. Characterization of particle size and shape by an IPI system through deep learning. J. Quant. Spectrosc. Radiat. Transf. 268, 107642 (2021).

    Article  Google Scholar 

  188. Hwang, S., Pan, J., Sunny, A. A. & Fan, L.-S. A machine learning-based particle–particle collision model for non-spherical particles with arbitrary shape. Chem. Eng. Sci. 251, 117439 (2022).

    Article  Google Scholar 

  189. Lai, Z., Chen, Q. & Huang, L. Machine-learning-enabled discrete element method: contact detection and resolution of irregular-shaped particles. Int. J. Numer. Anal. Methods Geomech. 46, 113–140 (2022).

    Article  Google Scholar 

  190. Yan, S.-N., Wang, T.-Y., Tang, T.-Q., Ren, A.-X. & He, Y.-R. Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient correlation based on artificial neural network. Pet. Sci. 17, 537–555 (2020).

    Article  Google Scholar 

  191. Hwang, S., Pan, J. & Fan, L.-S. A machine learning-based interaction force model for non-spherical and irregular particles in low Reynolds number incompressible flows. Powder Technol. 392, 632–638 (2021).

    Article  Google Scholar 

  192. Cheng, H. et al. An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput. Methods Appl. Mech. Eng. 350, 268–294 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  193. Ma, G., Guan, S., Wang, Q., Feng, Y. T. & Zhou, W. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. Acta Geotech. 17, 3463–3478 (2022).

    Article  Google Scholar 

  194. Wang, K. et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media. J. Comput. Phys. 443, 110526 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  195. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  196. Park, E. H., Kindratenko, V. & Hashash, Y. M. A. Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations. Comput. Geotech. 137, 104008 (2021).

    Article  Google Scholar 

  197. Gao, X., Yu, J., Lu, L., Li, C. & Rogers, W. A. Development and validation of SuperDEM–CFD coupled model for simulating non-spherical particles hydrodynamics in fluidized beds. Chem. Eng. J. 420, 127654 (2021).

    Article  Google Scholar 

  198. Wu, C. et al. System-level modeling of GPU/FPGA clusters for molecular dynamics simulations. in 2021 IEEE High Performance Extreme Computing Conference (HPEC) 1–8 (IEEE, 2021). https://doi.org/10.1109/HPEC49654.2021.9622838.

  199. Weinhart, T., Fuchs, R., Staedler, T., Kappl, M. & Luding, S. Sintering — pressure- and temperature-dependent contact models. in Particles in Contact (ed. Antonyuk, S.) 311–338 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-15899-6_10.

  200. Taghizadeh, K., Steeb, H., Luding, S. & Magnanimo, V. Elastic waves in particulate glass–rubber mixtures. Proc. R. Soc. A Math. Phys. Eng. Sci. 477, 20200834 (2021).

    ADS  MathSciNet  Google Scholar 

  201. Luding, S. Introduction to discrete element methods. Eur. J. Environ. Civ. Eng. 12, 785–826 (2008).

    Article  Google Scholar 

  202. Angelidakis, V., Nadimi, S., Otsubo, M. & Utili, S. CLUMP: a code library to generate universal multi-sphere particles. SoftwareX 15, 100735 (2021).

    Article  Google Scholar 

  203. Ferellec, J. & McDOWELL, G. Modelling realistic shape and particle inertia in DEM. Géotechnique 60, 227–232 (2010).

    Article  MATH  Google Scholar 

  204. Zhao, S., Chen, H. & Zhao, J. Multiscale modeling of freeze–thaw behavior in granular media. Acta Mech. Sin. 39, 722195 (2023).

    Article  MathSciNet  Google Scholar 

  205. Zhao, S. & Zhao, J. SudoDEM: unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles. Comput. Phys. Commun. 259, 107670 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  206. Ye, T., Phan-Thien, N. & Lim, C. T. Particle-based simulations of red blood cells — a review. J. Biomech. 49, 2255–2266 (2016).

    Article  Google Scholar 

  207. Nagata, T. et al. A simple collision algorithm for arbitrarily shaped objects in particle-resolved flow simulation using an immersed boundary method. Int. J. Numer. Methods Fluids 92, 1256–1273 (2020).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.Z. and S.Z. acknowledge the financial supports from the National Natural Science Foundation of China (via Project Nos 11972030 and 51909095) and Research Grants Council of Hong Kong (GRF Projects Nos 16206322, 16208720 and 16211221 and F-HKUST601/19). J.Z. also acknowledges the supports by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083) and the internal research supports provided by HKUST (FP907, IEG22EG01 and IEG22EG01PG).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation, revision and editing.

Corresponding authors

Correspondence to Jidong Zhao or Shiwei Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Devang Khakhar, Farhang Radjai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhao, S. & Luding, S. The role of particle shape in computational modelling of granular matter. Nat Rev Phys 5, 505–525 (2023). https://doi.org/10.1038/s42254-023-00617-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00617-9

  • Springer Nature Limited

This article is cited by

Navigation