Developing catalytic reactions for organic synthesis is the central goal of countless research groups worldwide. High-throughput experimentation is invaluable for this pursuit, with the requisite tools becoming increasingly available to both industrial and academic research labs.
References
Zhuo, C.-X. & Fürstner, A. J. Am. Chem. Soc. 140, 10514–10523 (2018).
Troshin, K. & Hartwig, J. F. Science 357, 175–181 (2017).
Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Science 359, 435–439 (2018).
DiRocco, D. A. et al. Science 356, 426–430 (2017).
Santanilla, A. B. et al. Science 347, 49–53 (2015).
Perera, D. et al. Science 359, 429–434 (2018).
Hendershot, R. J., Snively, C. M. & Lauterbach, J. Chem. Eur. J. 11, 806–814 (2005).
Leitch, D. C. et al. Org. Process Res. Dev. 21, 1806–1814 (2017).
Zeymer, C. & Hilvert, D. Annu. Rev. Biochem. 87, 131–157 (2018).
Beller, M. & Wu, X.-F. Transition Metal Catalyzed Carbonylation Reactions (Springer-Verlag, Berlin, 2013).
Martinelli, J. R., Watson, D. A., Freckmann, D. M. M., Barder, T. E. & Buchwald, S. L. J. Org. Chem. 73, 7102–7107 (2008).
De Vries, J. G. & de Vries, A. H. M. Eur. J. Org. Chem. 2003, 799–811 (2003).
Peil, K. P. et al. Macromol. Rapid Commun. 25, 119–126 (2004).
Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. Acc. Chem. Res. 50, 2976–2985 (2017).
Shultz, C. S. & Krska, S. W. Acc. Chem. Res. 40, 1320–1326 (2007).
Selekman, J. A. et al. Annu. Rev. Chem. Biomol. Eng. 8, 52–547 (2017).
Welch, C. J. et al. Org. Process Res. Dev. 21, 414–419 (2017).
Gesmundo, N. J. et al. Nature 557, 228–232 (2018).
Richardson, J. et al. J. Org. Chem. 82, 3741–3750 (2017).
McNally, A., Prier, C. K. & MacMillan, D. W. C. Science 334, 1114–1117 (2011).
Monfette, S., Blacquiere, J. M. & Fogg, D. E. Organometallics 30, 36–42 (2011).
Vandavasi, J. K. & Newman, S. G. Synlett 29, 2081–2086 (2018).
Kuhn, K. M. et al. J. Am. Chem. Soc. 131, 5313–5320 (2009).
Zhu, H. et al. Catal. Sci. Technol. 5, 4164–4173 (2015).
Friedfeld, M. R. et al. Science 342, 1076–1080 (2013).
Hansen, E. C. et al. Nat. Chem. 8, 1126–1130 (2016).
Hie, L. et al. Angew. Chem. Int. Ed. 55, 15129–15132 (2016).
Vantourout, J. C. et al. ACS Catal. 8, 9560–9566 (2018).
Bahr, M. N. et al. Org. Process Res. Dev. 22, 1500–1508 (2018).
Lin, S. et al. Science 361, eaar6236 (2018).
Ahneman, D. T. et al. Science 360, 186–190 (2018).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Allen, C.L., Leitch, D.C., Anson, M.S. et al. The power and accessibility of high-throughput methods for catalysis research. Nat Catal 2, 2–4 (2019). https://doi.org/10.1038/s41929-018-0220-4
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-018-0220-4
- Springer Nature Limited
This article is cited by
-
Combinatorial high throughput methodologies: the potentials in heterogeneous catalysts synthesis, screening and discovery—a review
Bulletin of the National Research Centre (2024)
-
Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis
Nature Synthesis (2024)
-
Deciphering complexity in Pd–catalyzed cross-couplings
Nature Communications (2024)
-
Rapid planning and analysis of high-throughput experiment arrays for reaction discovery
Nature Communications (2023)
-
Automation and computer-assisted planning for chemical synthesis
Nature Reviews Methods Primers (2021)