Skip to main content

Advertisement

Log in

Digital agriculture to design sustainable agricultural systems

  • Comment
  • Published:

From Nature Sustainability

View current issue Submit your manuscript

The global food system must become more sustainable. Digital agriculture — digital and geospatial technologies to monitor, assess and manage soil, climatic and genetic resources — illustrates how to meet this challenge so as to balance the economic, environmental and social dimensions of sustainable food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: DA in agricultural systems.

References

  1. Double Burden of Malnutrition (World Health Organization, 2020); https://go.nature.com/3cODjJX

  2. Springmann, M. et al. Nature 562, 519–525 (2018).

    Article  CAS  Google Scholar 

  3. Schramski, J. R., Woodson, C. B. & Brown, J. H. Nat. Sustain. https://doi.org/10.1038/s41893-020-0503-z (2020).

    Article  Google Scholar 

  4. Sachs, J. D. The Age of Sustainable Development (Columbia Univ. Press, 2015).

  5. Pretty, J. et al. Nat. Sustain. 1, 441–446 (2018).

    Article  Google Scholar 

  6. Gebbers, R. & Adamchuk, V. I. Science 327, 828–831 (2010).

    Article  CAS  Google Scholar 

  7. Walter, A., Finger, R., Huber, R. & Buchmann, N. Proc. Natl Acad. Sci. USA 114, 6148–6150 (2017).

    Article  CAS  Google Scholar 

  8. Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture ERR-217 (US Department of Agriculture, Economic Research Service, 2016); https://go.nature.com/2TSNF2s

  9. Cox, C. & Rundquist, S. Polluted Runoff: A Broken Promise Threatens Drinking Water in the Heartland (Environmental Working Group, 2018); https://go.nature.com/2IDDr0H

  10. Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Sci. Rep. 9, 5774 (2019).

    Article  Google Scholar 

  11. Schulte, L. A. et al. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    Article  CAS  Google Scholar 

  12. Barron-Gafford, G. A. et al. Nat. Sustain. 2, 848–855 (2019).

    Article  Google Scholar 

  13. Robertson, G. P. et al. Science 356, eaal2324 (2017).

    Article  Google Scholar 

  14. Capalbo, S. M., Antle, J. M. & Seavert, C. Agric. Syst. 155, 191–199 (2017).

    Article  Google Scholar 

  15. Transforming Agriculture with Artificial Intelligence (CTA SPORE, 2019); https://spore.cta.int/en

  16. Smith, P. et al. Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Agriculture/National Institute for Food and Agriculture (awards 2015-68007-23133 and 2018-67003-27406), US Department of Energy, Office of Science, Office of Biological and Environmental Research (awards DESC0018409 and DE-FC02-07ER64494) and Michigan State University AgBioResearch. We thank G. P. Robertson, P. Grace, S. Swinton, J. Hatfield, R. Martinez-Feria, S. Archontoulis, J. Jones and J. Ritchie for their comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Basso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, B., Antle, J. Digital agriculture to design sustainable agricultural systems. Nat Sustain 3, 254–256 (2020). https://doi.org/10.1038/s41893-020-0510-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-0510-0

  • Springer Nature Limited

This article is cited by

Navigation