Skip to main content
Log in

CHROMOSOME ORGANIZATION

Reeling it in: how DNA topology drives loop extrusion by condensin

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Structural maintenance of chromosomes (SMC) complexes such as condensin regulate chromosome organization by extruding loops. A new study uses single-molecule imaging of condensin on supercoiled DNA to understand how condensins navigate the under- and overwound DNA states common throughout the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Condensin induces and coalesces positively supercoiled DNA, which acts as a binding site for additional condensins.

References

  1. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Science 366, 1345–1349 (2019).

    Article  CAS  Google Scholar 

  2. Golfier, S., Quail, T., Kimura, H. & Brugués, J. eLife 9, e53885 (2020).

    Article  Google Scholar 

  3. Davidson, I. F. et al. Science 366, 1338–1345 (2019).

    Article  CAS  Google Scholar 

  4. Ganji, M. et al. Science 360, 102–105 (2018).

    Article  CAS  Google Scholar 

  5. Yu, H. & Dröge, P. Trends Biochem. Sci. 39, 219–220 (2014).

    Article  CAS  Google Scholar 

  6. Naughton, C. et al. Nat. Struct. Mol. Biol. 20, 387–395 (2013).

    Article  CAS  Google Scholar 

  7. Teves, S. S. & Henikoff, S. Nat. Struct. Mol. Biol. 21, 88–94 (2014).

    Article  CAS  Google Scholar 

  8. Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00802-x (2022).

    Article  PubMed  Google Scholar 

  9. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J.-M. J. Cell Sci. 117, 6435–6445 (2004).

    Article  CAS  Google Scholar 

  10. Sun, M., Nishino, T. & Marko, J. F. Nucleic Acids Res. 41, 6149–6160 (2013).

    Article  CAS  Google Scholar 

  11. Eeftens, J. M. et al. EMBO J. 36, 3448–3457 (2017).

    Article  CAS  Google Scholar 

  12. Bazett-Jones, D. P., Kimura, K. & Hirano, T. Mol. Cell 9, 1183–1190 (2002).

    Article  CAS  Google Scholar 

  13. Kimura, K. & Hirano, T. Cell 90, 625–634 (1997).

    Article  CAS  Google Scholar 

  14. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Nat. Methods 5, 159–161 (2008).

    Article  CAS  Google Scholar 

  15. Gabriele, M. et al. Science 376, 496–501 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Vos and S. Nemsick for insightful comments on this piece. D.N.N. and A.S.H. are supported by the Broad Institute of MIT and Harvard. A.S.H. additionally acknowledges support from US National Institutes of Health grants R00GM130896, DP2GM140938, R33CA257878 and UM1HG011536, National Science Foundation grant 2036037, the Mathers Foundation and a Pew-Stewart Cancer Research Scholar grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders S. Hansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narducci, D.N., Hansen, A.S. Reeling it in: how DNA topology drives loop extrusion by condensin. Nat Struct Mol Biol 29, 623–625 (2022). https://doi.org/10.1038/s41594-022-00805-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00805-8

  • Springer Nature America, Inc.

Navigation