Skip to main content
Log in

CENTROMERES

Chromatin, stacked at the centromere

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Cryo-EM analysis reveals the mechanism by which chromatin is compacted at the centromere by the H3 histone variant CENP-N. Intriguingly, despite the structural differences between CENP-N and linker H1 histones, both appear to similarly compact higher-order nucleosome structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Fundamental conformational differences between canonical chromatin and centromeric chromatin.

References

  1. Nagpal, H. & Fierz, B. J. Mol. Biol. 433, 166676 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, K. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00758-y (2022).

    Article  PubMed  Google Scholar 

  3. Hara, M. & Fukagawa, T. Prog. Mol. Subcell. Biol. 56, 29–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Tachiwana, H. et al. Nature 476, 232–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Takizawa, Y. et al. Structure 28, 44–53.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Roulland, Y. et al. Mol. Cell 63, 674–685 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Varga-Weisz, P., Zlatanova, J., Leuba, S. H., Schroth, G. P. & van Holde, K. Proc. Natl Acad. Sci. USA 91, 3525–3529 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ausio, J. BioEssays 37, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Romero, R. & Ausio, J. Epigenetics 9, 791–797 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma, A. B., Dimitrov, S., Hamiche, A. & Van Dyck, E. Nucleic Acids Res. 47, 1051–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Tian, T. et al. Cell Res. 28, 374–378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rudd, M. K. & Willard, H. F. Trends Genet. 20, 529–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lowary, P. T. & Widom, J. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Vasudevan, D., Chua, E. Y. D. & Davey, C. A. J. Mol. Biol. 403, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Song, F. et al. Science 344, 376–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Pentakota, S. et al. eLife 6, e33442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Talbert, P. B. & Henikoff, S. Exp. Cell Res. 389, 111895 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Nishimura, K., Komiya, M., Hori, T., Itoh, T. & Fukagawa, T. J. Cell Biol. 218, 134–149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia Ramirez, M., Dong, F. & Ausió, J. J. Biol. Chem. 267, 19587–19595 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Caudron-Herger, M. et al. Mol. Cell 75, 184–199.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steiner, F. A. & Henikoff, S. eLife 3, e02025 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katrina V. Good or Juan Ausió.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Good, K.V., Ausió, J. Chromatin, stacked at the centromere. Nat Struct Mol Biol 29, 288–290 (2022). https://doi.org/10.1038/s41594-022-00759-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00759-x

  • Springer Nature America, Inc.

Navigation