Skip to main content
Log in

NANOSCALE BIOPHYSICS

Stretching the resolution limit of atomic force microscopy

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Atomic force microscopy (AFM) is unique in visualizing functional biomolecules in aqueous solution at ~1 nm resolution. By borrowing localization methods from fluorescence microscopy, AFM has been shown to discern structural domains that may be separated by only a few Ångströms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Factors that can limit spatial resolution in bio-AFM.
Fig. 2: From peaks to peaking probability and LAFM.

References

  1. Walker, M. L. et al. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  2. Yildiz, A. et al. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  3. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Nature 468, 72–76 (2010).

    Article  CAS  Google Scholar 

  4. Heath, G. R. et al. Nature 594, 385–390 (2021).

    Article  CAS  Google Scholar 

  5. Fukuma, T., Kobayashi, K., Matsushige, K. & Yamada, H. Appl. Phys. Lett. 87, 034101 (2005).

    Article  Google Scholar 

  6. Hoogenboom, B. W. et al. Appl. Phys. Lett. 88, 193109 (2006).

    Article  Google Scholar 

  7. Engel, A. & Müller, D. J. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  8. Schabert, F. A. & Engel, A. Biophys. J. 67, 2394–2403 (1994).

    Article  CAS  Google Scholar 

  9. Asakawa, H. et al. Biophys. J. 101, 1270–1276 (2011).

    Article  CAS  Google Scholar 

  10. Ido, S. et al. ACS Nano 7, 1817–1822 (2013).

    Article  CAS  Google Scholar 

  11. Dufrêne, Y. F. et al. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  Google Scholar 

  12. Gan, Y. Surf. Sci. Rep. 64, 99–121 (2009).

    Article  CAS  Google Scholar 

  13. Odin, C., Aimé, J. P., El Kaakour, Z. & Bouhacina, T. Surf. Sci. 317, 321–340 (1994).

    Article  CAS  Google Scholar 

  14. Fechner, P. et al. Biophys. J. 96, 3822–3831 (2009).

    Article  CAS  Google Scholar 

  15. Scheuring, S., Müller, D. J., Stahlberg, H., Engel, H.-A. & Engel, A. Eur. Biophys. J. 31, 172–178 (2002).

    Article  CAS  Google Scholar 

  16. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  17. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  18. Rust, M. J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  19. Pyne, A., Thompson, R., Leung, C., Roy, D. & Hoogenboom, B. W. Small 10, 3257–3261 (2014).

    Article  CAS  Google Scholar 

  20. Scheuring, S. et al. EMBO J. 18, 4981–4987 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart W. Hoogenboom.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoogenboom, B.W. Stretching the resolution limit of atomic force microscopy. Nat Struct Mol Biol 28, 629–630 (2021). https://doi.org/10.1038/s41594-021-00638-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00638-x

  • Springer Nature America, Inc.

Navigation