Skip to main content
Log in

GENE SILENCING

New players on the piRNA field

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

The nuclear piRNA pathway safeguards genome integrity in the germline by silencing transposable elements. Three recent studies have identified new players in the mammalian pathway. Two of these, TEX15 and SPOCD1, might provide a link between piRNA-guided complexes that recognize genomic targets and the molecular machinery that induces DNA methylation and transcriptional repression during mouse spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Comparison of piRNA-mediated transcriptional silencing in Drosophila and mice.

References

  1. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Tóth, K. & Hannon, G. J. Science 316, 744–747 (2007).

    Article  CAS  Google Scholar 

  2. Aravin, A. A. et al. Mol. Cell 31, 785–799 (2008).

    Article  CAS  Google Scholar 

  3. Kuramochi-Miyagawa, S. et al. Genes Dev. 22, 908–917 (2008).

    Article  CAS  Google Scholar 

  4. Pezic, D., Manakov, S. A., Sachidanandam, R. & Aravin, A. A. Genes Dev. 28, 1410–1428 (2014).

    Article  CAS  Google Scholar 

  5. Yang, F. et al. Genes Dev. 34, 745–750 (2020).

    Article  Google Scholar 

  6. Schöpp, T. Nat. Commun. https://doi.org/10.1038/s41467-020-17372-5 (2020).

  7. Zoch, A. et al. Nature https://doi.org/10.1038/s41586-020-2557-5 (2020).

  8. Yang, F., Eckardt, S., Leu, N. A., McLaughlin, K. J. & Wang, P. J. J. Cell Biol. 180, 673–679 (2008).

    Article  CAS  Google Scholar 

  9. Ariyoshi, M. & Schwabe, J. W. R. Genes Dev. 17, 1909–1920 (2003).

    Article  CAS  Google Scholar 

  10. Smith, Z. D. & Meissner, A. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  Google Scholar 

  11. Liu, N. et al. Nature 553, 228–232 (2018).

    Article  CAS  Google Scholar 

  12. Dönertas, D., Sienski, G. & Brennecke, J. Genes Dev. 27, 1693–1705 (2013).

    Article  Google Scholar 

  13. Le Thomas, A. et al. Genes Dev. 27, 390–399 (2013).

    Article  Google Scholar 

  14. Yashiro, R. et al. Cell Rep. 23, 3647–3657 (2018).

    Article  CAS  Google Scholar 

  15. Huang, X. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.07.14.203323 (2020).

  16. Olovnikov, I., Aravin, A. A. & Fejes Tóth, K. Curr. Opin. Genet. Dev. 22, 164–171 (2012).

    Article  CAS  Google Scholar 

  17. Yu, Y. et al. Science 350, 339–342 (2015).

    Article  CAS  Google Scholar 

  18. Yoshimura, T. et al. EMBO Rep. 19, e42054 (2018).

    Article  Google Scholar 

  19. Yang, B. X. et al. Cell 163, 230–245 (2015).

    Article  CAS  Google Scholar 

  20. Ninova, M., Fejes Tóth, K. & Aravin, A. A. Development 146, dev181180 (2019).

    Article  CAS  Google Scholar 

  21. Ninova, M. et al. Mol. Cell 77, 556–570.e6 (2020).

    Article  CAS  Google Scholar 

  22. Czech, B., Preall, J. B., McGinn, J. & Hannon, G. J. Mol. Cell 50, 749–761 (2013).

    Article  CAS  Google Scholar 

  23. Mugat, B. et al. Nat. Commun. 11, 2818 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Fejes Tóth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninova, M., Fejes Tóth, K. New players on the piRNA field. Nat Struct Mol Biol 27, 777–779 (2020). https://doi.org/10.1038/s41594-020-0484-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0484-7

  • Springer Nature America, Inc.

This article is cited by

Navigation