Skip to main content

Advertisement

Log in

Assessing the contribution of the chemical exposome to neurodegenerative disease

  • Perspective
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Over the past few decades, numerous environmental chemicals from solvents to pesticides have been suggested to be involved in the development and progression of neurodegenerative diseases. Most of the evidence has accumulated from occupational or cohort studies in humans or laboratory research in animal models, with a range of chemicals being implicated. What has been missing is a systematic approach analogous to genome-wide association studies, which have identified dozens of genes involved in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Fortunately, it is now possible to study hundreds to thousands of chemical features under the exposome framework. This Perspective explores how advances in mass spectrometry make it possible to generate exposomic data to complement genomic data and thereby better understand neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The chemical exposome of neurodegenerative diseases: from epidemiological concept to implementation.
Fig. 2: Cellular and molecular pathways affected by chemical pollutants in AD and PD neurodegenerative diseases.

Similar content being viewed by others

References

  1. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    PubMed  Google Scholar 

  3. Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 19, 111–112 (2020).

    PubMed  Google Scholar 

  4. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    PubMed  Google Scholar 

  5. Gan, L., Cookson, M. R., Petrucelli, L. & La Spada, A. R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 21, 1300–1309 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    CAS  PubMed  Google Scholar 

  7. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Keller, M. F. et al. Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson’s disease. Hum. Mol. Genet. 21, 4996–5009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rappaport, S. M. Genetic factors are not the major causes of chronic diseases. PLoS ONE 11, e0154387 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. INSERM Collective Expertise Centre. Effects of Pesticides on Health: New Data https://doi.org/10.1051/978-2-7598-2721-3 (EDP Sciences, 2022).

  11. Goldman, S. M. et al. Risk of Parkinson disease among service members at Marine Corps Base Camp Lejeune. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2023.1168 (2023).

  12. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    PubMed  Google Scholar 

  13. Jokanović, M., Oleksak, P. & Kuca, K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 484, 153407 (2023).

    PubMed  Google Scholar 

  14. Woodruff, T. J., Zota, A. R. & Schwartz, J. M. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ. Health Perspect. 119, 878–885 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Govarts, E. et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 249, 114119 (2023).

    CAS  PubMed  Google Scholar 

  16. Wild, C. P. Complementing the genome with an ‘exposome’: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    CAS  PubMed  Google Scholar 

  17. Gunnarsson, L. -G. & Bodin, L. Occupational exposures and neurodegenerative diseases-a systematic literature review and meta-analyses. Int. J. Environ. Res. Public Health 16, 337 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Brouwer, M. et al. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ. Int. 107, 100–110 (2017).

    CAS  PubMed  Google Scholar 

  19. Paul, K. C. et al. A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides. Nat. Commun. 14, 2803 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Richardson, J. R. et al. Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol. 71, 284–290 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Ross, G. W. et al. Association of brain heptachlor epoxide and other organochlorine compounds with lewy pathology. Mov. Disord. 34, 228–235 (2019).

    CAS  PubMed  Google Scholar 

  22. Weisskopf, M. G. et al. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 74, 1055–1061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Medehouenou, T. C. M. et al. Exposure to polychlorinated biphenyls and organochlorine pesticides and risk of dementia, Alzheimer’s disease and cognitive decline in an older population: a prospective analysis from the Canadian Study of Health and Aging. Environ. Health 18, 57 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Cicero, C. E. et al. Metals and neurodegenerative diseases. A systematic review. Environ. Res. 159, 82–94 (2017).

    CAS  PubMed  Google Scholar 

  25. Zhao, Y., Ray, A., Portengen, L., Vermeulen, R. & Peters, S. Metal exposure and risk of Parkinson’s disease: a systematic review and meta-analysis. Am. J. Epidemiol. https://doi.org/10.1093/aje/kwad082 (2023).

  26. Goldman, S. M. et al. Solvent exposures and Parkinson disease risk in twins. Ann. Neurol. 71, 776–784 (2012).

    CAS  PubMed  Google Scholar 

  27. Nielsen, S. S. et al. Solvent exposed occupations and risk of Parkinson disease in Finland. Clin. Park. Relat. Disord. 4, 100092 (2021).

    PubMed  PubMed Central  Google Scholar 

  28. Koeman, T. et al. Occupational exposures and risk of dementia-related mortality in the prospective Netherlands Cohort Study. Am. J. Ind. Med. 58, 625–635 (2015).

    CAS  PubMed  Google Scholar 

  29. Letellier, N. et al. Association between occupational solvent exposure and cognitive performance in the French CONSTANCES study. Occup. Environ. Med. 77, 223–230 (2020).

    PubMed  Google Scholar 

  30. Hu, C. -Y. et al. Association between ambient air pollution and Parkinson’s disease: systematic review and meta-analysis. Environ. Res. 168, 448–459 (2019).

    CAS  PubMed  Google Scholar 

  31. Gong, Y. et al. Global ambient particulate matter pollution and neurodegenerative disorders: a systematic review of literature and meta-analysis. Environ. Sci. Pollut. Res. 30, 39418–39430 (2023).

    CAS  Google Scholar 

  32. Weuve, J. et al. Exposure to air pollution in relation to risk of dementia and related outcomes: an updated systematic review of the epidemiological literature. Environ. Health Perspect. 129, 096001 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Best, E. A., Juarez-Colunga, E., James, K., LeBlanc, W. G. & Serdar, B. Biomarkers of exposure to polycyclic aromatic hydrocarbons and cognitive function among elderly in the United States (National Health and Nutrition Examination Survey: 2001–2002). PLoS ONE 11, e0147632 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Park, S. K., Ding, N. & Han, D. Perfluoroalkyl substances and cognitive function in older adults: should we consider non-monotonic dose-responses and chronic kidney disease? Environ. Res. 192, 110346 (2021).

    CAS  PubMed  Google Scholar 

  35. Weng, X. et al. Association between mixed exposure of phthalates and cognitive function among the US elderly from NHANES 2011–2014: three statistical models. Sci. Total Environ. 828, 154362 (2022).

    CAS  PubMed  Google Scholar 

  36. Shi, Y. et al. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: a cross-sectional study. Sci. Total Environ. 858, 160129 (2023).

    CAS  PubMed  Google Scholar 

  37. Rock, K. D. & Patisaul, H. B. Environmental mechanisms of neurodevelopmental toxicity. Curr. Environ. Health Rep. 5, 145–157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vrijheid, M., Casas, M., Gascon, M., Valvi, D. & Nieuwenhuijsen, M. Environmental pollutants and child health—a review of recent concerns. Int. J. Hyg. Environ. Health 219, 331–342 (2016).

    CAS  PubMed  Google Scholar 

  39. Modgil, S., Lahiri, D. K., Sharma, V. L. & Anand, A. Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl. Neurodegener. 3, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Tanner, C. M., Goldman, S. M., Ross, G. W. & Grate, S. J. The disease intersection of susceptibility and exposure: chemical exposures and neurodegenerative disease risk. Alzheimers Dement. 10, S213–S225 (2014).

    PubMed  Google Scholar 

  41. Shi, J.-Q. et al. NLRP3 inflammasome: a potential therapeutic target in fine particulate matter-induced neuroinflammation in Alzheimer’s disease. J. Alzheimers Dis. 77, 923–934 (2020).

    CAS  PubMed  Google Scholar 

  42. Cresto, N. et al. Pesticides at brain borders: impact on the blood–brain barrier, neuroinflammation, and neurological risk trajectories. Chemosphere 324, 138251 (2023).

    CAS  PubMed  Google Scholar 

  43. Nougadère, A. et al. Total diet study on pesticide residues in France: levels in food as consumed and chronic dietary risk to consumers. Environ. Int. 45, 135–150 (2012).

    PubMed  Google Scholar 

  44. Turusov, V., Rakitsky, V. & Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ. Health Perspect. 110, 125–128 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Costas-Ferreira, C. & Faro, L. R. F. Neurotoxic Effects of neonicotinoids on mammals: what is there beyond the activation of nicotinic acetylcholine receptors?—a systematic review. Int. J. Mol. Sci. 22, 8413 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Andersen, H. R. et al. Pyrethroids and developmental neurotoxicity—a critical review of epidemiological studies and supporting mechanistic evidence. Environ. Res. 214, 113935 (2022).

    CAS  PubMed  Google Scholar 

  47. Wan, F. et al. The pyrethroids metabolite 3-phenoxybenzoic acid induces dopaminergic degeneration. Sci. Total Environ. 838, 156027 (2022).

    CAS  PubMed  Google Scholar 

  48. Jiao, Z., Wu, Y. & Qu, S. Fenpropathrin induces degeneration of dopaminergic neurons via disruption of the mitochondrial quality control system. Cell Death Discov. 6, 78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Loser, D. et al. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. Arch. Toxicol. 95, 2081–2107 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gan, W., Manning, K. J., Cleary, E. G., Fortinsky, R. H. & Brugge, D. Exposure to ultrafine particles and cognitive decline among older people in the United States. Environ. Res. 227, 115768 (2023).

    CAS  PubMed  Google Scholar 

  51. Oberdörster, G., Elder, A. & Rinderknecht, A. Nanoparticles and the brain: cause for concern? J. Nanosci. Nanotechnol. 9, 4996–5007 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Prüst, M., Meijer, J. & Westerink, R. H. S. The plastic brain: neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol. 17, 24 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Shan, S., Zhang, Y., Zhao, H., Zeng, T. & Zhao, X. Polystyrene nanoplastics penetrate across the blood–brain barrier and induce activation of microglia in the brain of mice. Chemosphere 298, 134261 (2022).

    CAS  PubMed  Google Scholar 

  54. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    CAS  PubMed  Google Scholar 

  55. Connell, E. et al. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol. Neurodegener. 17, 43 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelly, G. C., Watase, C. K. & Ho, D. H. in Biomarkers in Toxicology https://doi.org/10.1007/978-3-030-87225-0_36-1 (eds. Patel, V. B. et al.) 1–25 (Springer, 2022).

  57. Nicholson, S., Baccarelli, A. & Prada, D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. Environ. Res. 204, 112316 (2022).

    CAS  PubMed  Google Scholar 

  58. Ardeshir, R. A., Zolgharnein, H., Movahedinia, A., Salamat, N. & Zabihi, E. Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicol. Rep. 4, 348–357 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meijer, M., Hamers, T. & Westerink, R. H. S. Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides. Neurotoxicology 43, 110–116 (2014).

    CAS  PubMed  Google Scholar 

  60. Loser, D. et al. Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Arch. Toxicol. 95, 3695–3716 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. OECD. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals https://doi.org/10.1787/ceca15a9-en (OECD, 2018).

  62. Ashok, A., Rai, N. K., Tripathi, S. & Bandyopadhyay, S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol. Sci. 143, 64–80 (2015).

    CAS  PubMed  Google Scholar 

  63. Fitzgerald, E. F. et al. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and neuropsychological status among older adults in New York. Neurotoxicology 33, 8–15 (2012).

    CAS  PubMed  Google Scholar 

  64. Xu, M. -Y., Wang, P., Sun, Y. -J., Yang, L. & Wu, Y. -J. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food Chem. Toxicol. 103, 246–252 (2017).

    CAS  PubMed  Google Scholar 

  65. Yoon, J. et al. Urinary phthalate metabolites and slow walking speed in the Korean Elderly Environmental Panel II Study. Environ. Health Perspect. 131, 47005 (2023).

    CAS  PubMed  Google Scholar 

  66. David, A. et al. Towards a comprehensive characterisation of the human internal chemical exposome: challenges and perspectives. Environ. Int. 156, 106630 (2021).

    CAS  PubMed  Google Scholar 

  67. Orešič, M. et al. Metabolome in progression to Alzheimer’s disease. Transl. Psychiatry 1, tp201155 (2011).

    Google Scholar 

  68. Varma, V. R. et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 15, e1002482 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Arnold, M. et al. Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nat. Commun. 11, 1148 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Agin, A. et al. Environmental exposure to phthalates and dementia with Lewy bodies: contribution of metabolomics. J. Neurol. Neurosurg. Psychiatry 91, 968–974 (2020).

    PubMed  Google Scholar 

  71. Chang, C.-W. et al. Monitoring long-term chemical exposome by characterizing the hair metabolome using a high-resolution mass spectrometry-based suspect screening approach. Chemosphere 332, 138864 (2023).

    CAS  PubMed  Google Scholar 

  72. Niedzwiecki, M. M. et al. High-resolution metabolomic profiling of Alzheimer’s disease in plasma. Ann. Clin. Transl. Neurol. 7, 36–45 (2020).

    CAS  PubMed  Google Scholar 

  73. Huber, C. et al. A large scale multi-laboratory suspect screening of pesticide metabolites in human biomonitoring: from tentative annotations to verified occurrences. Environ. Int. 168, 107452 (2022).

    CAS  PubMed  Google Scholar 

  74. Paul, K. C., Horvath, S., Del Rosario, I., Bronstein, J. M. & Ritz, B. DNA methylation biomarker for cumulative lead exposure is associated with Parkinson’s disease. Clin. Epigenetics 13, 59 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Farooqui, Z. et al. Associations of cumulative Pb exposure and longitudinal changes in mini-mental status exam scores, global cognition and domains of cognition: The VA Normative Aging Study. Environ. Res. 152, 102–108 (2017).

    CAS  PubMed  Google Scholar 

  76. Liu, W., Wang, B., Xiao, Y., Wang, D. & Chen, W. Secondhand smoking and neurological disease: a meta-analysis of cohort studies. Rev. Environ. Health 36, 271–277 (2021).

    PubMed  Google Scholar 

  77. Ames, J. et al. Neurocognitive and physical functioning in the Seveso Women’s Health Study. Environ. Res. 162, 55–62 (2018).

    CAS  PubMed  Google Scholar 

  78. Raffetti, E. et al. Polychlorinated biphenyls (PCBs) and risk of dementia and Parkinson disease: a population-based cohort study in a North Italian highly polluted area. Chemosphere 261, 127522 (2020).

    CAS  PubMed  Google Scholar 

  79. Zhao, Y. et al. Association between organophosphorus flame retardants exposure and cognitive impairment among elderly population in southern China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2022.157763 (2022).

  80. Mastrantonio, M. et al. Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy. Eur. J. Public Health 28, 180–185 (2018).

    PubMed  Google Scholar 

  81. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 12, 643972 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Eid, A. et al. Effects of DDT on amyloid precursor protein levels and amyloid beta pathology: mechanistic links to Alzheimer’s disease risk. Environ. Health Perspect. 130, 87005 (2022).

    CAS  PubMed  Google Scholar 

  83. Oyovwi, M. O. et al. Repeated endosulfan exposure induces changes in neurochemicals, decreases ATPase transmembrane ionic-pumps, and increased oxidative/nitrosative stress in the brains of rats: reversal by quercetin. Pestic. Biochem. Physiol. 175, 104833 (2021).

    CAS  PubMed  Google Scholar 

  84. Fernandes, L. S. et al. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicol. Vitr. 29, 522–528 (2015).

    CAS  Google Scholar 

  85. Taillebois, E., Cartereau, A., Jones, A. K. & Thany, S. H. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pestic. Biochem. Physiol. 151, 59–66 (2018).

    CAS  PubMed  Google Scholar 

  86. Farder-Gomes, C. F. et al. Harmful effects of fipronil exposure on the behavior and brain of the stingless bee Partamona helleri Friese (Hymenoptera: Meliponini). Sci. Total Environ. 794, 148678 (2021).

    CAS  PubMed  Google Scholar 

  87. Hernández-Plata, I., Giordano, M., Díaz-Muñoz, M. & Rodríguez, V. M. The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. Neurotoxicology 46, 79–91 (2015).

    PubMed  Google Scholar 

  88. Liu, C. et al. Exposure to the environmentally toxic pesticide maneb induces Parkinson’s disease-like neurotoxicity in mice: a combined proteomic and metabolomic analysis. Chemosphere 308, 136344 (2022).

    CAS  PubMed  Google Scholar 

  89. Soares, M. V. et al. Neurotoxicity induced by toluene: In silico and in vivo evidences of mitochondrial dysfunction and dopaminergic neurodegeneration. Environ. Pollut. 298, 118856 (2022).

    CAS  PubMed  Google Scholar 

  90. Wang, Y. et al. Exposure to PM2.5 aggravates Parkinson’s disease via inhibition of autophagy and mitophagy pathway. Toxicology 456, 152770 (2021).

    CAS  PubMed  Google Scholar 

  91. Miyazaki, W., Fujiwara, Y. & Katoh, T. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the development and function of the blood–brain barrier. Neurotoxicology 52, 64–71 (2016).

    CAS  PubMed  Google Scholar 

  92. Xia, Y. et al. Effects of subchronic exposure to benzo[a]pyrene (B[a]P) on learning and memory, and neurotransmitters in male Sprague–Dawley rat. Neurotoxicology 32, 188–198 (2011).

    CAS  PubMed  Google Scholar 

  93. Park, E. -J. et al. Whole cigarette smoke condensates induce accumulation of amyloid beta precursor protein with oxidative stress in murine astrocytes. Toxics 9, 150 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ono, K., Hasegawa, K., Yamada, M. & Naiki, H. Nicotine breaks down preformed Alzheimer’s beta-amyloid fibrils in vitro. Biol. Psychiatry 52, 880–886 (2002).

    CAS  PubMed  Google Scholar 

  95. Costa, L. G., Pellacani, C., Dao, K., Kavanagh, T. J. & Roque, P. J. The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. Neurotoxicology 48, 68–76 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Moyano, P. et al. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75NTR signaling disruption. Food Chem. Toxicol. 157, 112614 (2021).

    CAS  PubMed  Google Scholar 

  97. Huang, W. et al. Effects of di-(2-ethylhexyl) phthalate (DEHP) on behavior and dopamine signaling in zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 93, 103885 (2022).

    CAS  PubMed  Google Scholar 

  98. Yu, Y. et al. Perfluorooctane sulfonate disrupts the blood brain barrier through the crosstalk between endothelial cells and astrocytes in mice. Environ. Pollut. 256, 113429 (2020).

    CAS  PubMed  Google Scholar 

  99. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    PubMed  Google Scholar 

  100. Quinn, R. A. et al. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 38, 143–154 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.L.-A., J.C., F.M., A.D. and C.S. were funded by a grant from the ‘Fondation pour la Recherche Medicale’ (ENV202003011520). They acknowledge L. Rieusset for her contribution to this work. C.S. also received research support from the ‘Fondation de France’ (00130155). C.S. acknowledges the Precision and global Vascular Brain Health Institute funded by the France 2030 investment plan (Instituts Hospitalo-Universitaires vague 3, IHU3 initiative). J.C., F.M., X.C., R.B. and A.D. acknowledge the research infrastructure France Exposome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Samieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Alice Chen-Plotkin and David Jett for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefèvre-Arbogast, S., Chaker, J., Mercier, F. et al. Assessing the contribution of the chemical exposome to neurodegenerative disease. Nat Neurosci 27, 812–821 (2024). https://doi.org/10.1038/s41593-024-01627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01627-1

  • Springer Nature America, Inc.

Navigation