Skip to main content
Log in


Digital phenotyping could help detect autism

  • News & Views
  • Published:

From Nature Medicine

View current issue Submit your manuscript

Researchers have developed a screening tool for autism that uses computer vision and machine learning to analyze autism-related behaviors — but greater reliability and robust validation will be needed if such tools are to be used in primary care settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. APA Task Force on Psychological Assessment and Evaluation Guidelines (2020).

  2. Perochon, S., Di Martino, J. M., Carpenter, K. L. H. & Compton, S. Nat. Med. (2023).

  3. Wen, T. H. et al. Sci. Rep. 12, 4253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siu, A. L. JAMA 315, 691–696 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Pierce, K. et al. J. Pediatr. 159, 458–465.e6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Engelmann, L. & Wackers, G. Big Data Soc. 9, 2017–2020 (2022).

    Google Scholar 

  7. Robins, D. L. et al. Pediatrics 133, 37–45 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lord, C. et al. Lancet 399, 271–334 (2022).

    Article  PubMed  Google Scholar 

  9. Fombonne, E. J. Child Psychol. Psychiatry Allied Discip. 64, 711–714 (2023).

    Article  Google Scholar 

  10. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  11. De Giacomo, A. & Fombonne, E. Eur. Child Adolesc. Psychiatry 7, 131–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, R. B., Vangala, S., Elashoff, D., Safari, T. & Smith, B. A. Sensors 21, 616 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This research was supported by a grant from the National Institute of Mental Health (R01MH08187), a grant from the National Institute of Child Health and Human Development (K23HD099275) and by the Simons Foundation Autism Research Initiative (624965, 977910).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Catherine Lord.

Ethics declarations

Competing interests

C.L. reports royalties from Western Psychological Services for diagnostic instruments, including the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview-Revised (ADI-R) and the Social Communication Questionnaire (SCQ). She is also on the scientific advisory boards or projects for Tilray, Roche, Gateway, Springtide and Greenwich Biosciences. R.B.W. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lord, C., Wilson, R.B. Digital phenotyping could help detect autism. Nat Med 29, 2412–2413 (2023).

Download citation

  • Published:

  • Issue Date:

  • DOI:

  • Springer Nature America, Inc.