Skip to main content
Log in

An optical atomic clock based on a highly charged ion

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Optical atomic clocks are the most accurate measurement devices ever constructed and have found many applications in fundamental science and technology1,2,3. The use of highly charged ions (HCI) as a new class of references for highest-accuracy clocks and precision tests of fundamental physics4,5,6,7,8,9,10,11 has long been motivated by their extreme atomic properties and reduced sensitivity to perturbations from external electric and magnetic fields compared with singly charged ions or neutral atoms. Here we present the realization of this new class of clocks, based on an optical magnetic-dipole transition in Ar13+. Its comprehensively evaluated systematic frequency uncertainty of 2.2 × 10−17 is comparable with that of many optical clocks in operation. From clock comparisons, we improve by eight and nine orders of magnitude on the uncertainties for the absolute transition frequency12 and isotope shift (40Ar versus 36Ar) (ref. 13), respectively. These measurements allow us to investigate the largely unexplored quantum electrodynamic (QED) nuclear recoil, presented as part of improved calculations of the isotope shift, which reduce the uncertainty of previous theory14 by a factor of three. This work establishes forbidden optical transitions in HCI as references for cutting-edge optical clocks and future high-sensitivity searches for physics beyond the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Scheme of the method for optical frequency comparison.
Fig. 2: Zeeman components used in this work for the Ar13+ clock.
Fig. 3: Instability of the ratio between the 40Ar13+ and 171Yb+ transition frequencies.

Similar content being viewed by others

Data availability

The traces of the frequency ratios are available at https://doi.org/10.5281/zenodo.6901524. Further datasets generated and analysed during this study are available from the corresponding author on request.

Code availability

All code that has been used to generate or analyse data during this study are available from the corresponding author on request.

References

  1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  CAS  ADS  Google Scholar 

  2. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    Article  PubMed  ADS  Google Scholar 

  4. Kozlov, M. G., Safronova, M. S., Crespo López-Urrutia, J. R. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).

    Article  CAS  ADS  Google Scholar 

  5. Schiller, S. Hydrogenlike highly charged ions for tests of the time independence of fundamental constants. Phys. Rev. Lett. 98, 180801 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Berengut, J., Dzuba, V. & Flambaum, V. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions. Phys. Rev. Lett. 105, 120801 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Berengut, J. C., Dzuba, V. A., Flambaum, V. V. & Ong, A. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant. Phys. Rev. Lett. 109, 070802 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Derevianko, A., Dzuba, V. A. & Flambaum, V. V. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012).

    Article  PubMed  ADS  Google Scholar 

  9. Safronova, M. S. et al. Highly charged Ag-like and In-like ions for the development of atomic clocks and the search for α variation. Phys. Rev. A 90, 042513 (2014).

    Article  ADS  Google Scholar 

  10. Yudin, V. I., Taichenachev, A. V. & Derevianko, A. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks. Phys. Rev. Lett. 113, 233003 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Beloy, K., Dzuba, V. A. & Brewer, S. M. Quadruply ionized barium as a candidate for a high-accuracy optical clock. Phys. Rev. Lett. 125, 173002 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Egl, A. et al. Application of the continuous Stern-Gerlach effect for laser spectroscopy of the 40Ar13+ fine structure in a Penning trap. Phys. Rev. Lett. 123, 123001 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Soria Orts, R. et al. Exploring relativistic many-body recoil effects in highly charged ions. Phys. Rev. Lett. 97, 103002 (2006).

    Article  PubMed  ADS  Google Scholar 

  14. Zubova, N. A. et al. Isotope shifts of the 2p3/2–2p1/2 transition in B-like ions. Phys. Rev. A 93, 052502 (2016).

    Article  ADS  Google Scholar 

  15. Gillaspy, J. D. Highly charged ions. J. Phys. B 34, 93–130 (2001).

    Article  ADS  Google Scholar 

  16. Arnold, K. J., Kaewuam, R., Roy, A., Tan, T. R. & Barrett, M. D. Blackbody radiation shift assessment for a lutetium ion clock. Nat. Commun. 9, 1650 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 53001 (2008).

    Article  CAS  ADS  Google Scholar 

  18. Bieber, D. J., Margolis, H. S., Oxley, P. K. & Silver, J. D. Studies of magnetic dipole transitions in highly charged argon and barium using an electron beam ion trap. Phys. Scr. T73, 64–66 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Soria Orts, R. et al. Zeeman splitting and g factor of the 1s22s22p2P3/2 and 2P1/2 levels in Ar13+. Phys. Rev. A 76, 052501 (2007).

    Article  ADS  Google Scholar 

  20. Mäckel, V., Klawitter, R., Brenner, G., Crespo López-Urrutia, J. R. & Ullrich, J. Laser spectroscopy on forbidden transitions in trapped highly charged Ar13+ ions. Phys. Rev. Lett. 107, 143002 (2011).

    Article  PubMed  ADS  Google Scholar 

  21. Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Schmöger, L. et al. Coulomb crystallization of highly charged ions. Science 347, 1233–1236 (2015).

    Article  PubMed  ADS  Google Scholar 

  23. Micke, P. et al. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature 578, 60–65 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. King, S. A. et al. Algorithmic ground-state cooling of weakly coupled oscillators using quantum logic. Phys. Rev. X 11, 041049 (2021).

    CAS  Google Scholar 

  25. Lange, R. et al. Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett. 126, 011102 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Agababaev, V. A. et al. Ground-state g factor of middle-Z boronlike ions. J. Phys. Conf. Ser. 1138, 012003 (2018).

    Article  Google Scholar 

  27. Agababaev, V. A. et al. g factor of the [(1s)2(2s)22p]2P3/2 state of middle-Z boronlike ions. X-Ray Spectrom. 49, 143–148 (2020).

    Article  CAS  ADS  Google Scholar 

  28. Yu, Y.-m. & Sahoo, B. K. Investigating ground-state fine-structure properties to explore suitability of boronlike S11+–K14+ and galliumlike Nb10+–Ru13+ ions as possible atomic clocks. Phys. Rev. A 99, 022513 (2019). Note: units for quadrupole moment in Table VI should read ×10−7 Hz/(V/m2) (Y.-m. Yu, private communication).

    Article  CAS  ADS  Google Scholar 

  29. Müller, R. A. Private communication (2021).

  30. Micke, P. et al. The Heidelberg compact electron beam ion traps. Rev. Sci. Instrum 89, 063109 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Leopold, T. et al. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions. Rev. Sci. Instrum 90, 073201 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Micke, P. et al. Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications. Rev. Sci. Instrum 90, 065104 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Lapierre, A. et al. Relativistic electron correlation, quantum electrodynamics, and the lifetime of the 1s22s22p 2P o3/2 level in boronlike argon. Phys. Rev. Lett. 95, 183001 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Peik, E., Schneider, T. & Tamm, C. Laser frequency stabilization to a single ion. J. Phys. B At. Mol. Opt. Phys. 39, 145–158 (2006).

    Article  CAS  ADS  Google Scholar 

  37. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Dubé, P., Madej, A. A., Zhou, Z. & Bernard, J. E. Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level. Phys. Rev. A 87, 023806 (2013).

    Article  ADS  Google Scholar 

  39. Keller, J., Partner, H. L., Burgermeister, T. & Mehlstäubler, T. E. Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118, 104501 (2015).

    Article  ADS  Google Scholar 

  40. Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  41. Nemitz, N. et al. Absolute frequency of 87Sr at 1.8 × 10−16 uncertainty by reference to remote primary frequency standards. Metrologia 58, 025006 (2021).

    Article  CAS  ADS  Google Scholar 

  42. Pizzocaro, M. et al. Absolute frequency measurement of the 1S03P0 transition of 171Yb with a link to international atomic time. Metrologia 57, 035007 (2020).

    Article  CAS  ADS  Google Scholar 

  43. Shabaev, V. M. QED theory of the nuclear recoil effect in atoms. Phys. Rev. A 57, 59–67 (1998).

    Article  CAS  ADS  Google Scholar 

  44. Arapoglou, I. et al. g-factor of boronlike argon 40Ar13+. Phys. Rev. Lett. 122, 253001 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Yu, Y.-m & Sahoo, B. K. Selected highly charged ions as prospective candidates for optical clocks with quality factors larger than 1015. Phys. Rev. A 97, 041403 (2018).

    Article  CAS  ADS  Google Scholar 

  46. Bekker, H. et al. Detection of the 5p–4f orbital crossing and its optical clock transition in Pr9+. Nat. Commun. 10, 5651 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Berengut, J. C., Delaunay, C., Geddes, A. & Soreq, Y. Generalized King linearity and new physics searches with isotope shifts. Phys. Rev. Res. 2, 043444 (2020).

    Article  CAS  Google Scholar 

  48. Rehbehn, N.-H. et al. Sensitivity to new physics of isotope-shift studies using the coronal lines of highly charged calcium ions. Phys. Rev. A 103, 040801 (2021).

    Article  ADS  Google Scholar 

  49. Dzuba, V. A. & Flambaum, V. V. Highly charged ions for atomic clocks and search for variation of the fine structure constant. Hyperfine Interact. 236, 79–86 (2015).

    Article  CAS  ADS  Google Scholar 

  50. Porsev, S. G. et al. Optical clocks based on the Cf15+ and Cf17+ ions. Phys. Rev. A 102, 012802 (2020).

    Article  CAS  ADS  Google Scholar 

  51. Nazé, C. et al. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. At. Data Nucl. Data Tables 100, 1197–1249 (2014).

    Article  ADS  Google Scholar 

  52. Benkler, E.  et al. End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level. Opt. Express 27, 36886–36902 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Itano, W. M. External-field shifts of the 199Hg+ optical frequency standard. J. Res. Natl Inst. Stand. Technol. 105, 829–837 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akerman, N. & Ozeri, R. Atomic combination clocks. New J. Phys. 20, 123026 (2018).

    Article  CAS  Google Scholar 

  55. Gan, H. C. J. et al. Oscillating-magnetic-field effects in high-precision metrology. Phys. Rev. A 98, 032514 (2018).

    Article  CAS  ADS  Google Scholar 

  56. Arnold, K. J. et al. Precision measurements of the 138Ba+6s2S1/2–5d2D5/2 clock transition. Phys. Rev. Lett. 124, 193001 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Yerokhin, V. A., Müller, R. A., Surzhykov, A., Micke, P. & Schmidt, P. O. Nonlinear isotope-shift effects in Be-like, B-like, and C-like argon. Phys. Rev. A 101, 012502 (2020).

    Article  CAS  ADS  Google Scholar 

  58. Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. Model operator approach to the Lamb shift calculations in relativistic many-electron atoms. Phys. Rev. A 88, 012513 (2013).

    Article  ADS  Google Scholar 

  59. Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Comput. Phys. Commun. 189, 175–181 (2015).

    Article  CAS  ADS  Google Scholar 

  60. Yerokhin, V. A. Nuclear-size correction to the Lamb shift of one-electron atoms. Phys. Rev. A 83, 012507 (2011).

    Article  ADS  Google Scholar 

  61. Angeli, I. & Marinova, K. P. Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013).

    Article  CAS  ADS  Google Scholar 

  62. Wang, M. et al. The Ame2012 atomic mass evaluation. Chin. Phys. C 36, 1603–2014 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Schmöger, M. Schwarz and J. Stark for early contributions to the experimental apparatus, T. Legero for his contributions to the frequency stabilization of the HCI spectroscopy laser, H. Margolis for discussions about the analysis of the frequency data and F. Wolf for comments on the manuscript. A.S. and V.A.Y. thank I. I. Tupitsyn for discussions. The project was supported by the Physikalisch-Technische Bundesanstalt, the Max Planck Society, the Max Planck-Riken-PTB Center for Time, Constants and Fundamental Symmetries, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through SCHM2678/5-1, SU 658/4-2, the collaborative research centres SFB 1225 ISOQUANT and SFB 1227 DQ-mat, and under Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967. These projects 17FUN07 CC4C and 20FUN01 TSCAC have received funding from the EMPIR programme co-financed by the participating states and from the European Union’s Horizon 2020 research and innovation programme. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101019987). S.A.K. acknowledges financial support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.A.K., L.J.S., P.M., T.L., E.B., J.R.C.L.-U. and P.O.S. developed the experimental setup. S.A.K., L.J.S., P.M., A.W., R.L. and N.H. carried out the experiments. S.A.K., L.J.S., A.W. and E.B. analysed the data. J.R.C.L.-U. and P.O.S. conceived and supervised the study. A.S. and V.A.Y. performed the theoretical calculations. S.A.K., L.J.S., A.S. and P.O.S. wrote the initial manuscript, with contributions from P.M. and J.R.C.L.-U. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Lukas J. Spieß or Piet O. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Victor Flambaum, Bijaya Kumar Sahoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Measured frequency ratios and absolute frequencies
Extended Data Table 2 Investigated systematic shifts (Δν) and corresponding 1-σ uncertainties (σ) for the Ar13+ clock

Supplementary information

Supplementary Methods

This file contains a detailed analysis of the systematic shifts of the frequency measurements, further information on the performed calculations and Supplementary Figures S1 and S2 and Supplementary Tables S1 and S2.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, S.A., Spieß, L.J., Micke, P. et al. An optical atomic clock based on a highly charged ion. Nature 611, 43–47 (2022). https://doi.org/10.1038/s41586-022-05245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05245-4

  • Springer Nature Limited

This article is cited by

Navigation