Abstract
The flashlamp-pumped, solid-state holmium:yttrium–aluminium–garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.
Key points
-
The holmium:yttrium–aluminium–garnet (YAG) laser is currently the gold standard for laser lithotripsy during flexible ureteroscopy because it can be used to effectively treat all stone compositions.
-
The frequency-doubled, double-pulse YAG (FREDDY) laser has been tested as a more compact and efficient solid-state laser than the initial dye lasers for short-pulse lithotripsy, but the FREDDY laser is not effective for all stone compositions.
-
The erbium:YAG laser has been tested for efficient ablation of urinary stones, but a suitable mid-infrared optical fibre delivery system is not available for this procedure.
-
The thulium fibre laser (TFL) is the most promising alternative to holmium for lithotripsy owing to its use of a more suitable TFL wavelength, smaller fibres, and potential for using a smaller, less expensive laser system; however, clinical studies are needed to assess this new technology.
-
TFL promotes the development of novel miniature fibre-optic delivery systems, including tapered, ball tip, hollow steel tip fibres, and muzzle brake fibre-optic tips, which can reduce both fibre burnback or degradation and stone retropulsion without sacrificing laser ablation rates.
Similar content being viewed by others
References
Fernstrom, I. & Johansson, B. Percutaneous pyelolithotomy. A new extraction technique. Scand. J. Urol. Nephrol. 10, 257–259 (1976).
Alken, P., Hutschenreiter, G., Gunther, R. & Marberger, M. Percutaneous stone manipulation. J. Urol. 125, 463–466 (1981).
Segura, J. W. et al. Percutaneous removal of kidney stones: review of 1,000 cases. J. Urol. 134, 1077–1081 (1985).
Ghani, K. R. et al. Trends in percutaneous nephrolithotomy and outcomes in the United States. J. Urol. 190, 558–564 (2013).
Chaussy, C. et al. The use of shock waves for the destruction of renal calculi without direct contact. Urol. Res. 4, 175 (1976).
Chaussy, C. et al. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J. Urol. 127, 417–420 (1982).
Assimos, D. et al. Surgical management of stones: AUA/Endourological Society Guideline. American Urological Association http://auanet.org/guidelines/surgical-management-of-stones-(aua/endourological-society-guideline-2016) (2016).
Lee, F. J. & Yeh, H. T. in Smith’s Textbook of Endourology (ed. Smith, A.) 612–623 (Wiley, 2012).
Matlaga, B. R., Jansen, P., Meckley, L. M., Byrne, T. W. & Lingeman, J. E. Treatment of ureteral and renal stones: a systematic review and meta-analysis of randomized, controlled trials. J. Urol. 188, 130–137 (2012).
Grasso, M. & Bagley, D. A 7.5/8.2 F actively deflectable, flexible ureteroscope: a new device for both diagnostic and therapeutic upper urinary tract endoscopy. Urology 43, 435–441 (1994).
Scales, C. D. et al. Comparative effectiveness of shock wave lithotripsy and ureteroscopy for treating patients with kidney stones. JAMA Surg. 149, 648–653 (2014).
Denstedt, J. D. & Clayman, R. V. Electrohydraulic lithotripsy of renal and ureteral calculi. J. Urol. 143, 13–17 (1990).
Sun, Y. et al. Pneumatic lithotripsy versus laser lithotripsy in the endoscopic treatment of ureteral calculi. J. Endourol. 15, 587–590 (2001).
Sofer, M. et al. Holmium: YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol. 167, 31–34 (2002).
Oberlin, D. T., Flum, A. S., Bachrach, L., Matulewicz, R. S. & Flury, S. C. Contemporary surgical trends in the management of upper tract calculi. J. Urol. 193, 880–884 (2015).
Dretler, S. P. Laser lithotripsy: a review of 20 years of research and clinical applications. Lasers Surg. Med. 8, 341–356 (1988).
Dretler, S. P., Watson, G., Parrish, J. A. & Murray, S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J. Urol. 137, 386–389 (1987).
Johnson, J. P., Oz, M. C., Chuck, R. S. & Treat, M. R. Comparison of methods for transcatheter fragmentation of gallstones. Surg. Endosc. 3, 7–10 (1989).
Spindel, M. L. et al. Comparison of holmium and flashlamp pumped dye lasers for use in lithotripsy of biliary calculi. Lasers Surg. Med. 12, 482–489 (1992).
Bagley, D. & Erhard, M. Use of the holmium laser in the upper urinary tract. Tech. Urol. 1, 25–30 (1995).
Matlaga, B. R. Contemporary surgical management of upper urinary tract calculi. J. Urol. 181, 2152–2156 (2009).
Scales, C. D. et al. Practice variation in the surgical management of urinary lithiasis. J. Urol. 186, 146–150 (2011).
Hardy, L. A., Irby, P. B. & Fried, N. M. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fibre laser ablation in air and water. Proc. SPIE 10468 Therapeutics and Diagnostics in Urology. 10468 https://doi.org/10.1117/12.2285069 (2018).
Chan, K. F. et al. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg. Med. 25, 22–37 (1999).
Roggan, A., Bindig, U., Wäsche, W. & Zgoda, F. Action Mechanisms of Laser Radiation in Biological Tissues (eds Berlien, H. P. & Muller, G. J.) 87 (Springer, 2003).
Hale, G. M. & Querry, M. R. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 12, 555–563 (1973).
Razvi, H. H., Chun, S. S., Denstedt, J. D. & Sales, J. L. Soft-tissue applications of the holmium:YAG laser in urology. J. Endourol. 9, 387–390 (1995).
Welch, A. J., van Gemert, M. J. C., Star, W. M. & Wilson, B. C. in Optical-Thermal Response of Laser-Irradiated Tissue (eds Welch, A. J. & van Gemert, M. J. C.) 27–64 (Springer, 1995).
Harrington, J. A. Infrared Fibers and their Applications (SPIE, 2004).
Scholle, K., Lamrini, S., Koopmann, P. & Fuhrber, P. in Frontiers in Guided Wave Optics & Optoelectronics (ed. Pal, B.) 471–500 (IntechOpen, 2010).
Dauw, C. A. et al. Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J. Endourol. 29, 1221–1230 (2015).
Molina, W. R. et al. Influence of saline on temperature profile of laser lithotripsy activation. J. Endourol. 29, 235–239 (2015).
Buttice, S. et al. Temperature changes inside the kidney: what happens during holmium:yttrium-aluminum-garnet laser usage? J. Endourol. 30, 574–579 (2016).
Aldoukhi, A. H., Ghani, K., Hall, T. L. & Roberts, W. W. Thermal response to high-power holmium laser lithotripsy. J. Endourol. 31, 1308–1312 (2017).
Wollin, D. A. et al. Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J. Endourol. 32, 59–63 (2018).
Finley, D. S. et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J. Endourol 19, 1041–1044 (2005).
Kang, H. W. et al. Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Lasers Surg. Med. 38, 762–772 (2006).
Kalra, P., Le, N. & Bagley, D. Effect of pulse width on object movement in vitro using Ho:YAG laser. J. Endourol. 21, 228–231 (2007).
Bader, M. J. et al. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J. Urol. 33, 471–477 (2015).
Wollin, D. A. et al. Variable pulse duration from a new Holmium:YAG laser: the effect on stone comminution, fibre tip degradation, and retropulsion dusting model. Urology 103, 47–51 (2017).
Trost, D. U. S. Laser pulse format for penetrating an absorbing fluid. US Patent US5321715A (1994).
Elhilali, M. M., Badaan, S., Ibrahim, A. & Andonian, S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J. Endourol. 31, 598–604 (2017).
Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).
Zorcher, T., Hochberger, J., Schrott, K. M., Kuhn, R. & Schafhauser, W. In vitro study concerning the efficiency of the frequency-doubled double-pulse Neodymium:YAG laser (FREDDY) for lithotripsy of calculi in the urinary tract. Lasers Surg. Med. 25, 38–42 (1999).
Delvecchio, F. C. et al. In vitro analysis of stone fragmentation ability of the FREDDY laser. J. Endourol. 17, 177–179 (2003).
Ebert, A., Stangle, J., Kuhn, R. & Schafhauser, W. The frequency-doubled double-pulse Neodym:YAG laser lithotripter (FREDDY) in lithotripsy of urinary stones. First clinical experience. Urologe A. 42, 825–833 (2003).
Marguet, C. G. et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. J. Urol. 173, 1797–1800 (2005).
Dubosq, F. et al. Endoscopic lithotripsy and the FREDDY laser: initial experience. J. Endourol. 20, 296–299 (2006).
Yates, J., Zabbo, A. & Pareek, G. A comparison of the FREDDY and holmium lasers during ureteroscopic lithotripsy. Lasers Surg. Med. 39, 637–640 (2007).
Santa-Cruz, R. W., Leveillee, R. J. & Krongrad, A. Ex vivo comparison of four lithotripters commonly used in the ureter: what does it take to perforate? J. Endourol. 12, 417–422 (1998).
Althunayan, A. M., Elkoushy, M. A., Elhilali, M. M. & Andonian, S. Adverse events resulting from lasers used in urology. J. Endourol. 28, 256–260 (2014).
Cordes, J., Lange, B., Jocham, D. & Kausch, I. Destruction of stone extraction basket during an in vitro lithotripsy—a comparison of four lithotripters. J. Endourol. 25, 1359–1362 (2011).
Cordes, J., Nguyen, F., Lange, B., Brinkmann, R. & Jocham, D. Damage of stone baskets by endourologic lithotripters: a laboratory study of 5 lithotripters and 4 basket types. Adv. Urol. 632790, 1–6 (2013).
Bader, M. J. et al. Impact of collateral damage to endourologic tools during laser lithotripsy—in vitro comparison of three different clinical laser systems. J. Endourol. 25, 667–672 (2011).
Freiha, G. S., Glickman, R. D. & Teichman, J. M. Holmium:YAG laser-induced damage to guidewires: experimental study. J. Endourol. 11, 331–336 (1997).
Honeck, P., Wendt-Nordahl, G., Hacker, A., Alken, P. & Knoll, T. Risk of collateral damage to endourologic tools by holmium:YAG laser energy. J. Endourol. 20, 495–497 (2006).
Teichman, J. M. et al. Erbium:YAG versus holmium:YAG lithotripsy. J. Urol. 165, 876–879 (2001).
Fried, N. M. Potential applications of the erbium:YAG laser in endourology. J. Endourol. 15, 889–894 (2001).
Chan, K. F. et al. Erbium:YAG laser lithotripsy mechanism. J. Urol. 168, 436–441 (2002).
Lee, H., Kang, H. W., Teichman, J. M., Oh, J. & Welch, A. J. Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy. Lasers Surg. Med. 38, 39–51 (2006).
Iwai, K. et al. Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap. Appl. Opt. 42, 2431–2435 (2003).
Yang, Y., Chaney, C. A. & Fried, N. M. Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibres. J. Endourol. 18, 830–835 (2004).
Raif, J., Vardi, M., Nahlieli, O. & Gannot, I. An Er:YAG laser endoscopic fibre delivery system for lithotripsy of salivary gland stones. Lasers Surg. Med. 38, 580–587 (2006).
Qiu, J. et al. Comparison of fluoride and sapphire optical fibres for Er:YAG laser lithotripsy. J. Biophotonics 3, 277–283 (2010).
Qui, J. et al. Femtosecond laser lithotripsy: feasibility and ablation mechanism. J. Biomed. Opt. 15, 028001 (2010).
Niemz, M. H. ed., Laser-tissue Interactions: Fundamentals and Applications 3rd Edition (Springer, 2007).
Xia, S. J. et al. Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur. Urol. 53, 382–389 (2008).
Jackson, S. D. & Lauto, A. Diode-pumped fibre lasers: a new clinical tool? Lasers Surg. Med. 30, 184–190 (2002).
Pierce, M. C., Jackson, S. D., Dickinson, M. R. & King, T. A. Laser-tissue interaction with a high-power 2 μm fibre laser: preliminary studies with soft tissue. Lasers Surg. Med. 25, 407–413 (1999).
Sumiyoshi, T. et al. High-power continuous-wave 3- and 2 μm cascade Ho3+:ZBLAN fibre laser and its medical applications. IEEE J. Sel. Top. Quantum. Electron. 5, 936–943 (1999).
Pierce, M. C., Jackson, S. D., Dickinson, M. R., King, T. A. & Sloan, P. Laser-tissue interaction with a continuous wave 3 μm fibre laser: preliminary studies with soft tissue. Lasers Surg. Med. 26, 491–495 (2000).
El-Sherif, A. F. & King, T. A. Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers. Lasers Med. Sci. 18, 139–147 (2003).
Fried, N. M. High-power laser vaporization of the canine prostate using a 110watt Thulium fibre laser at 1.91 μm. Lasers Surg. Med. 36, 52–56 (2005).
Fried, N. M. & Murray, K. E. High-power thulium fibre laser ablation of urological tissues at 1.94 μm. J. Endourol. 19, 25–31 (2005).
Fried, N. M. Thulium fibre laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110W Thulium fibre laser at 1.94 μm. Lasers Surg. Med. 37, 53–58 (2005).
Polder, K. D., Harrison, A., Eubanks, L. E. & Bruce, S. 1,927 fractional thulium fibre laser for treatment of nonfacial photodamage: a pilot study. Dermatol. Surg. 37, 342–348 (2011).
Weiss, E. T. et al. 1927nm fractional resurfacing of facial actinic keratosis: a promising new therapeutic option. J. Am. Acad. Dermatol. 68, 98–102 (2013).
Tunc, B. & Gulsoy, M. Tm:Fibre laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain. Lasers Surg. Med. 45, 48–56 (2013).
Guney, M., Tunc, B. & Gulsoy, M. Investigating the ablation efficiency of a 1940nm thulium fibre laser for intraoral surgery. Int. J. Oral Maxillofac. Surg. 43, 1015–1021 (2014).
Gesierich, W., Reichenberger, F., Fertl, A., Haeussinger, K. & Sroka, R. Endobronchial therapy with a thulium fibre laser (1940 nm). J. Thorac. Cardiovasc. Surg. 147, 1827–1832 (2014).
Alagha, H. Z. & Gulsoy, M. Photothermal ablation of liver tissue with 1940nm thulium fibre laser: an ex vivo study on lamb liver. J. Biomed. Opt. 21, 015007 (2016).
Demirkan, I., Sarp, A. S. K. & Gulsoy, M. Ceramic bracket debonding with Tm:fibre laser. J. Biomed. Opt. 21, 065007 (2016).
Pal, D., Ghosh, A., Sen, R. & Pal, A. Continuous-wave and quasi-continuous wave thulium-doped all-fibre laser: implementation on kidney stone fragmentation. Appl. Opt. 55, 6151–6155 (2016).
Jansen, E. D., van Leeuwen, T. G., Motamedi, M., Borst, C. & Welch, A. J. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg. Med. 14, 258–268 (1994).
Lange, B. I., Brendel, T. & Huttmann, G. Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl. Opt. 41, 5797–5803 (2002).
Schomacker, K. T., Domankevitz, Y., Flotte, T. J. & Deutsch, T. F. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage. Lasers Surg. Med. 11, 141–151 (1991).
Blackmon, R. L., Irby, P. B. & Fried, N. M. Comparison of holmium:YAG and thulium fibre laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J. Biomed. Opt. 16, 071403 (2011).
Blackmon, R. L. Thulium Fibre Laser Lithotripsy. Thesis, UNC Charlotte (2013).
Hardy, L. A., Kennedy, J. D., Wilson, C. R., Irby, P. B. & Fried, N. M. Analysis of Thulium fibre laser induced vapor bubbles for ablation of kidney stones. J. Biophotonics 10, 1240–1249 (2017).
Wilson, C. R., Hardy, L. A., Irby, P. B. & Fried, N. M. Collateral damage to the ureter and nitinol stone baskets during thulium fibre laser lithotripsy. Lasers Surg. Med. 47, 403–410 (2015).
Griffin, S. Fibre optics for destroying kidney stones. Biophotonics International 11, 44–47 (2004).
Nazif, O. A., Teichman, J. M. H., Glickman, R. D. & Welch, A. J. Review of laser fibres: a practical guide for urologists. J. Endourol. 18, 818–829 (2004).
Marks, A. J., Mues, A. C., Knudsen, B. E. & Teichman, J. M. H. Holmium:YAG lithotripsy proximal fibre failures from laser and fibre mismatch. Urology 71, 1049–1051 (2008).
Knudsen, B. E. et al. Performance and safety of holmium:YAG laser optical fibres. J. Endourol. 19, 1092–1097 (2005).
Mues, A. C., Teichman, J. M. & Knudsen, B. E. Evaluation of 24 holmium:YAG laser optical fibres for flexible ureteroscopy. J. Urol 182, 348–354 (2009).
Akar, E. C. & Knudsen, B. E. Evaluation of 16 new Holmium:Yttrium-Aluminum-Garnet laser optical fibres for ureteroscopy. Urology 86, 230–235 (2015).
Lee, H. et al. Effect of lithotripsy on holmium: YAG optical beam profile. J. Endourol. 17, 63–67 (2003).
Mues, A. C., Teichman, J. M. H. & Knudsen, B. E. Quantification of holmium:yttrium aluminum garnet optical tip degradation. J. Endourol. 23, 1425–1428 (2009).
Knudsen, B. E., Pedro, R., Hinck, B. & Monga, M. Durability of reusable holmium:YAG laser fibres: a multicenter study. J. Urol. 185, 160–163 (2011).
Wilson, C. R., Hardy, L. A., Irby, P. M. & Fried, N. M. Microscopic analysis of laser-induced proximal fibre tip damage during Holmium:YAG and Thulium fibre laser lithotripsy. Opt. Eng. 55, 046102 (2016).
Scott, N. J., Cilip, C. M. & Fried, N. M. Thulium fibre laser ablation of urinary stones through small-core optical fibres. IEEE J. Sel. Top. Quantum Electron. 15, 435–440 (2009).
Blackmon, R. L., Irby, P. B. & Fried, N. M. Thulium fibre laser lithotripsy using tapered fibres. Lasers Surg. Med. 42, 45–50 (2010).
Blackmon, R. L. et al. Thulium fibre laser ablation of kidney stones using a 50μmcore silica optical fibre. Opt. Eng. 54, 011004 (2015).
Wilson, C. R., Hutchens, T. C., Hardy, L. A., Irby, P. B. & Fried, N. M. A miniaturized, 1.9F integrated optical fibre and stone basket for use in thulium fibre laser lithotripsy. J. Endourol. 29, 1110–1114 (2015).
Kennedy, J. D., Wilson, C. R., Irby, P. B. & Fried, N. M. Miniature ureteroscope tip designs for use in Thulium fibre laser lithotripsy. Proc. SPIE 10038, Therapeutics and Diagnostics in Urology. https://doi.org/10.1117/12.2247822 (2017).
White, M. D., Moran, M. E., Calvano, C. J., Borhan-Manesh, A. & Mehlhaff, B. A. Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibres. J. Endourol. 12, 183–186 (1998).
Lee, H. et al. Stone retropulsion during holmium:YAG lithotripsy. J. Urol. 169, 881–885 (2003).
Lee, H. et al. Dependence of calculus retropulsion dynamics on fibre size and radiant exposure during Ho:YAG lithotripsy. J. Biomechan. Eng. 126, 506–515 (2004).
Sea, J. et al. Optimal power settings for holmium:YAG lithotripsy. J. Urol. 187, 914–919 (2012).
Struve, B. & Huber, G. Properties and medical applications of nearIR solid-state lasers. J. Phys. IV 1, C7-3–C7-6 (1991).
Hardy, L. A., Wilson, C. R., Irby, P. B. & Fried, N. M. Rapid thulium fibre laser lithotripsy at pulse rates up to 500 Hz using a stone basket. IEEE J. Sel. Top. Quantum Electron. 20, 138–141 (2014).
Zamyatina, V. et al. Super pulse thulium fibre laser for lithotripsy (abstract 28). Lasers Surg. Med. 48, 10 (2016).
Glybochko, P. et al. Comparison between the possibilities of holmium and thulium laser in lithotripsy in vitro. Eur. Urol. 16, e391–e392 (2017).
Dymov, A. et al. Thulium lithotripsy: from experiment to clinical practice. J. Urol. 197, e1285 (2017).
Hardy, L. A., Gonzalez, D. A., Irby, P. B. & Fried, N. M. Fragmentation and dusting of large kidney stones using a compact, air-cooled, high peak power, 1940nm, Thulium fiber laser. Proc. SPIE 10468, Therapeutics and Diagnostics in Urology 2018 10468 https://doi.org/10.1117/12.2285082 (2018).
Clarkin, J. P., Timmerman, R. J. & Shannon, J. H. Shaped fibre tips for medical and industrial applications. Proc. SPIE 5317, Optical Fibers and Sensors for Medical Applications IV 5317 https://doi.org/10.1117/12.540734 (2004).
Shin, R. H. et al. Evaluation of a novel ball tip holmium laser fibre: impact on ureteroscope performance and fragmentation efficiency. J. Endourol 30, 189–194 (2016).
Wilson, C. R., Hardy, L. A., Kennedy, J. D., Irby, P. B. & Fried, N. M. Miniature ball tip optical fibres for use in Thulium fibre laser ablation of kidney stones. J. Biomed. Opt. 21, 18003 (2016).
Hutchens, T. C., Blackmon, R. L., Irby, P. B. & Fried, N. M. Detachable fibre optic tips for use in thulium fibre laser lithotripsy. J. Biomed. Opt. 18, 38001 (2013).
Hutchens, T. C., Blackmon, R. L., Irby, P. B. & Fried, N. M. Hollow steel tips for reducing fibre burnback during Thulium fibre laser lithotripsy. J. Biomed. Opt. 18, 78001 (2013).
Hutchens, T. C., Gonzalez, D. A., Irby, P. B. & Fried, N. M. Fibre optic muzzle brake tip for reducing fibre burnback and stone retropulsion during Thulium fibre laser lithotripsy. J. Biomed. Opt. 22, 18001 (2017).
Martov, A. G. et al. Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia https://doi.org/10.18565/urology.2018.1.112-120 (2018).
Blackmon, R. L., Irby, P. B. & Fried, N. M. Holmium:YAG (λ = 2120 nm) versus thulium fibre laser (λ = 1908 nm) lithotripsy. Lasers Surg. Med. 42, 232–236 (2010).
Author information
Authors and Affiliations
Contributions
N.M.F. researched data for the article and wrote the manuscript. P.B.I. contributed to the discussion of content and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
N.M.F. is a consultant for IPG Medical Corporation (Marlborough, Massachusetts, USA) and is currently funded by a research grant from the National Institutes of Health (Bethesda, Maryland, USA). P.B.I. declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fried, N.M., Irby, P.B. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol 15, 563–573 (2018). https://doi.org/10.1038/s41585-018-0035-8
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41585-018-0035-8
- Springer Nature Limited
This article is cited by
-
Silicon photonics-based high-energy passively Q-switched laser
Nature Photonics (2024)
-
Thulium fibre laser (TFL) lithotripsy in paediatric urology
Journal of Pediatric Endoscopic Surgery (2024)
-
Experts’ recommendations in laser use for the treatment of urolithiasis: a comprehensive guide by the European Section of Uro-Technology (ESUT) and Training-Research in Urological Surgery and Technology (T.R.U.S.T.)-Group
World Journal of Urology (2024)
-
A multicentric non-randomized prospective observational study on the clinical efficiency of thulium fibre laser in large volume stones (> 1000 mm3)
World Journal of Urology (2023)
-
Thulium-Doped Fiber Laser and Its Application in Urinary Lithotripsy
Journal of Medical and Biological Engineering (2023)