Abstract
The most common types of calcium-containing crystals that are associated with joint and periarticular disorders are calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP) crystals. Several diverse but difficult-to-treat acute and chronic arthropathies and other clinical syndromes are associated with the deposition of these crystals. Although the pathogenic mechanism of calcium crystal deposition is partially understood, much remains to be investigated, as no drug is available to prevent crystal deposition, permit crystal dissolution or specifically target the pathogenic effects that result in the clinical manifestations. In this Review, the main clinical manifestations of CPP and BCP crystal deposition are discussed, along with the biological effects of these crystals, current therapeutic approaches and future directions in therapy.
Key points
-
Deposition of calcium-containing crystals, including calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP), results in a wide variety of articular and periarticular disorders.
-
Calcium-containing crystal deposition diseases are common but underdiagnosed conditions, and the treatment options are limited; no drug is available to prevent crystal deposition or permit crystal dissolution.
-
CPP crystal deposition (CPPD) diseases can be accurately diagnosed using compensated polarized microscopy to detect CPP crystals in the synovial fluid, whereas identifying BCP crystals in the synovial fluid is difficult.
-
BCP crystals are found in 100% of cartilage samples from patients with osteoarthritis (OA) undergoing joint replacement surgery and probably represent a therapeutic target in OA.
-
BCP crystals exert potentially pathogenic effects on a number of articular cell types including fibroblasts, chondrocytes and synovial macrophages.
-
Drugs targeting the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, membrane-proximal kinases, IL-6 and crystal deposition represent potential future therapeutics for arthropathies related to CPP and BCP crystals.
Similar content being viewed by others
References
Rosenthal, A. K. & Ryan, L. M. Calcium pyrophosphate deposition disease. N. Engl. J. Med. 374, 2575–2584 (2016).
Stack, J. & McCarthy, G. Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets. Curr. Opin. Rheumatol. 28, 122–126 (2016).
Morgan, M. P., Cooke, M. M. & McCarthy, G. M. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J. Mammary Gland Biol. Neoplasia 10, 181–187 (2005).
Durcan, L., Bolster, F., Kavanagh, E. C. & McCarthy, G. M. The structural consequences of calcium crystal deposition. Rheum. Dis. Clin. North Am. 40, 311–328 (2014).
Mitton-Fitzgerald, E., Gohr, C. M., Bettendorf, B. & Rosenthal, A. K. The role of ANK in calcium pyrophosphate deposition disease. Curr. Rheumatol. Rep. 18, 25 (2016).
MacMullan, P. & McCarthy, G. Treatment and management of pseudogout: insights for the clinician. Ther. Adv. Musculoskelet. Dis. 4, 121–131 (2012).
Malik, A., Schumacher, H. R., Dinnella, J. E. & Clayburne, G. M. Clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. J. Clin. Rheumatol. 15, 22–24 (2009).
Wilkins, E., Dieppe, P., Maddison, P. & Evison, G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann. Rheum. Dis. 42, 280–284 (1983).
Richette, P., Bardin, T. & Doherty, M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology 48, 711–715 (2009).
Neame, R., Carr, A., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).
Abhishek, A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr. Opin. Rheumatol. 28, 133–139 (2016).
Doherty, M. & Dieppe, P. A. Pyrophosphate arthropathy as a late complication of juvenile chronic arthritis. J. Rheumatol. 11, 219–221 (1984).
Doherty, M., Watt, I. & Dieppe, P. A. Localised chondrocalcinosis in post-meniscectomy knees. Lancet 319, 1207–1210 (1982).
Abhishek, A. et al. Evidence of a systemic predisposition to chondrocalcinosis and association between chondrocalcinosis and osteoarthritis at distant joints: a cross-sectional study. Arthritis Care Res. 65, 1052–1058 (2013).
Chuck, A. J., Pattrick, M. G., Hamilton, E., Wilson, R. & Doherty, M. Crystal deposition in hypophosphatasia: a reappraisal. Ann. Rheum. Dis. 48, 571–576 (1989).
Pawlotsky, Y. et al. Elevated parathyroid hormone 44–68 and osteoarticular changes in patients with genetic hemochromatosis. Arthritis Rheum. 42, 799–806 (1999).
Ea, H. K., Blanchard, A., Dougados, M. & Roux, C. Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J. Rheumatol. 32, 1840–1842 (2005).
Williams, C. J. et al. Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 48, 2627–2631 (2003).
Ramos, Y. F. M. et al. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann. Rheum. Dis. 74, 1756–1762 (2015).
Williams, C. J. et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 26, 797–806 (2018).
Dieppe, P. A. et al. Pyrophosphate arthropathy: a clinical and radiological study of 105 cases. Ann. Rheum. Dis. 41, 371–376 (1982).
Ryan, L. M. & McCarty D. J. in Arthritis and Allied conditions: A Textbook of Rheumatology (eds McCarty, D. J. & Koopman, W. J.) 1835–1855 (Lea and Febiger, 1993).
Matsumura, M. & Hara, S. Crowned dens syndrome. N. Engl. J. Med. 367, e34 (2012).
Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear” — sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).
Inoue, A. et al. Usefulness of cervical computed tomography and magnetic resonance imaging for rapid diagnosis of crowned dens syndrome: a case report and review of the literature. Int. J. Surg. Case Rep. 30, 50–54 (2018).
Stack, J. & McCarthy, G. M. in Rheumatology 7th edn (eds Hochberg, M.C. et al.) 1632–1638 (Elsevier, London, UK, 2018).
Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).
Halverson, P. B. & McCarty, D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann. Rheum. Dis. 45, 603–605 (1986).
Ea, H.-K. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLOS ONE 8, e57352 (2013).
Doumas, C., Vazirani, R. M., Clifford, P. D. & Owens, P. Acute calcific periarthritis of the hand and wrist: a series and review of the literature. Emerg. Radiol. 14, 199–203 (2007).
McCarthy, G. M., Carrera, G. F. & Ryan, L. M. Acute calcific periarthritis of the finger joints: a syndrome of women. J. Rheumatol. 20, 1077–1080 (1993).
Rosenthal, A. K. Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168–172 (2018).
Dieppe, P. A. et al. Apatite associated destructive arthritis. Rheumatology 23, 84–91 (1984).
Mccarty, D. J., Halverson, P. B., Carrera, G. F., Brewer, B. J. & Kozin, F. “Milwaukee shoulder” — association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum. 24, 464–473 (1981).
MacMullan, P., McMahon, G. & McCarthy, G. Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 78, 358–363 (2011).
Ottaviani, S. et al. Efficacy of anakinra in calcium pyrophosphate crystal-induced arthritis: a report of 16 cases and review of the literature. Joint Bone Spine 80, 178–182 (2013).
Sivera, F., Andrés, M. & Pascual, E. Current advances in therapies for calcium pyrophosphate crystal arthritis. Curr. Opin. Rheumatol. 28, 140–144 (2016).
Chollet-Janin, A., Finckh, A., Dudler, J. & Guerne, P.-A. Methotrexate as an alternative therapy for chronic calcium pyrophosphate deposition disease: an exploratory analysis. Arthritis Rheum. 56, 688–692 (2007).
Finckh, A. et al. Methotrexate in chronic-recurrent calcium pyrophosphate deposition disease: no significant effect in a randomized crossover trial. Arthritis Res. Ther. 16, 458 (2014).
Andrés, M., Sivera, F. & Pascual, E. Therapy for CPPD: options and evidence. Curr. Rheumatol. Rep. 20, 31 (2018).
Ebenbichler, G. R. et al. Ultrasound therapy for calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1533–1538 (1999).
Angelo, C. et al. Effectiveness of treatment of calcific tendinitis of the shoulder by disodium EDTA. Arthritis Care Res. 61, 84–91 (2008).
Park, S. M. et al. Management of acute calcific tendinitis around the hip joint. Am. J. Sports Med. 42, 2659–2665 (2014).
Frassanito, P., Cavalieri, C., Maestri, R. & Felicetti, G. Effectiveness of extracorporeal shock wave therapy and kinesio taping in calcific tendinopathy of the shoulder: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 54, 333–340 (2018).
Petrillo, S., Longo, U. G., Papalia, R. & Denaro, V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: a systematic review. Musculoskelet. Surg. 101, 105–112 (2017).
Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).
Liu-Bryan, R. & Lioté, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine 72, 295–302 (2005).
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 (2006).
Place, D. E. & Kanneganti, T. D. Recent advances in inflammasome biology. Curr. Opin. Immunol. 50, 32–38 (2018).
Malik, A. & Kanneganti, T. D. Inflammasome activation and assembly at a glance. J. Cell Sci. 130, 3955–3963 (2017).
Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2015).
Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).
Netea, M. G. et al. IL-1β processing in host defense: beyond the inflammasomes. PLOS Pathog. 6, e1000661 (2010).
Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).
Desai, J. et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci. Rep. 7, 15003 (2017).
Garg, A. D. et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front. Immunol. 6, 588 (2015).
Desai, J., Mulay, S. R., Nakazawa, D. & Anders, H. J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell. Mol. Life Sci. 73, 2211–2219 (2016).
Delgado-Rizo, V. et al. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 8, 81 (2017).
Williams, C. J. The role of ANKH in pathologic mineralization of cartilage. Curr. Opin. Rheumatol. 28, 145–151 (2016).
Uzuki, M., Sawai, T., Ryan, L. M., Rosenthal, A. K. & Masuda, I. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease. J. Rheumatol. 41, 65–74 (2014).
Rosenthal, A. K. et al. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res. Ther. 15, R154 (2013).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02243631 (2018).
Conway, R. & McCarthy, G. M. Calcium-containing crystals and osteoarthritis: an unhealthy alliance. Curr. Rheumatol. Rep. 20, 13 (2018).
McCarthy, G. M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann. Rheum. Dis. 60, 399–406 (2001).
Bai, G., Howell, D. S., Howard, G. A., Roos, B. A. & Cheung, H. S. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 9, 416–422 (2001).
Morgan, M. P. et al. Basic calcium phosphate crystal–induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1β. Arthritis Rheum. 50, 1642–1649 (2004).
Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways. Circ. Res. 96, 1248–1256 (2005).
Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).
Pazár, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).
Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).
Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).
van der Kraan, P. M. & van den Berg, W. B. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20, 223–232 (2012).
Thouverey, C., Bechkoff, G., Pikula, S. & Buchet, R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17, 64–72 (2009).
Gurley, K. A. et al. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J. Bone Miner. Res. 21, 1238–1247 (2006).
Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).
Jotanovic, Z., Mihelic, R., Sestan, B. & Dembic, Z. Role of interleukin-1 inhibitors in osteoarthritis. Drugs Aging 29, 343–358 (2012).
Corr, E. M., Cunningham, C. C., Helbert, L., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23 (2017).
Shi, Y. To forge a solid immune recognition. Protein Cell 3, 564–570 (2012).
Yan, S., D., M. A. & Gilbert, N. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 233, 203–217 (2009).
Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).
Corr, E. M., Cunningham, C. C. & Dunne, A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 251, 197–205 (2016).
Van Lent, P. L. E. M. et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64, 1466–1476 (2012).
Schelbergen, R. F. P. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).
Austermann, J., Zenker, S. & Roth, J. S100-alarmins: potential therapeutic targets for arthritis. Expert Opin. Ther. Targets 21, 738–750 (2017).
van den Bosch, M. H. et al. Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J. Rheumatol. 43, 1874–1884 (2016).
Rosenberg, J. H., Rai, V., Dilisio, M. F. & Agrawal, D. K. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets. Mol. Cell. Biochem. 434, 171–179 (2017).
Sunahori, K. et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8, R69 (2006).
Je-Hwang, R. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α–induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).
Chang, C.-C., Tsai, Y.-H., Liu, Y., Lin, S.-Y. & Liang, Y.-C. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor–mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology 54, 1913–1922 (2015).
Cunningham, C. C., Corr, E. M., McCarthy, G. M. & Dunne, A. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthritis Cartilage 24, 2141–2152 (2016).
Cheung, H. S., Sallis, J. D. & Struve, J. A. Specific inhibition of basic calcium phosphate and calcium pyrophosphate crystal-induction of metalloproteinase synthesis by phosphocitrate. Biochim. Biophys. Acta 1315, 105–111 (1996).
Nair, D., Misra, R. P., Sallis, J. D. & Cheung, H. S. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J. Biol. Chem. 272, 18920–18925 (1997).
Sun, Y., Franklin, A. M., Mauerhan, D. R. & Hanley, E. N. Biological effects of phosphocitrate on osteoarthritic articular chondrocytes. Open Rheumatol. J. 11, 62–74 (2017).
Cheung, H. S., Sallis, J. D., Demadis, K. D. & Wierzbicki, A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54, 2452–2461 (2006).
Sun, Y. et al. Disease-modifying effects of phosphocitrate and phosphocitrate-β-ethyl ester on partial meniscectomy-induced osteoarthritis. BMC Musculoskelet. Disord. 16, 270 (2015).
Nasi, S., Ea, H.-K., Lioté, F., So, A. & Busso, N. Sodium thiosulfate prevents chondrocyte mineralization and reduces the severity of murine osteoarthritis. PLOS ONE 11, e0158196 (2016).
Acknowledgements
A.D. is funded by the Health Research Board, Ireland. The authors thank O. Mahon for assistance with illustrations and for critical reviewing of the manuscript.
Reviewer information
Nature Reviews Rheumatology thanks E. Pascual, A. K. Rosenthal and B. Rothschild and for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Chondrocalcinosis
-
Calcification of articular fibrocartilage or hyaline cartilage, most commonly owing to calcium pyrophosphate dihydrate crystal deposition.
- Hypophosphatasia
-
A rare genetic disorder characterized by defective mineralization of bone and/or teeth caused by a deficiency of serum and bone alkaline phosphatase.
- Gitelman variant of Bartter syndrome
-
A genetic renal disorder characterized by hypokalaemic alkalosis (low serum potassium levels) caused by inactivating mutations in a gene encoding a thiazide-sensitive sodium–chloride cotransporter (SLC12A3).
- Birefringent
-
A state that enables a material of ordered structure to split a single ray of unpolarized light into two rays; the colour of the birefringent material changes as its orientation changes in relation to the light source.
- Acetabular labrum
-
A ring of fibrous cartilage that surrounds the acetabulum (cup) of the hip joint.
- Symphysis pubis
-
A cartilaginous joint located between the left and right pubic bones.
- Annulus fibrosus
-
The outer layer of the intervertebral disc composed of strong layers of collagen fibres that surrounds the soft inner core of the disc.
- Calciphylaxis
-
A rare and potentially fatal disease cause by the accumulation of calcium in small blood vessels of the fat and skin.
- Crepitus
-
A medical term used to describe the cracking or popping sensation or sound that occurs when moving a joint; it is caused by the presence of air in the subcutaneous tissue.
- Barbotage
-
Needle aspiration and lavage; it is used in the treatment of calcific tendinitis.
Rights and permissions
About this article
Cite this article
McCarthy, G.M., Dunne, A. Calcium crystal deposition diseases — beyond gout. Nat Rev Rheumatol 14, 592–602 (2018). https://doi.org/10.1038/s41584-018-0078-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-018-0078-5
- Springer Nature Limited
This article is cited by
-
Calcium Pyrophosphate Crystal Formation and Deposition: Where Do we Stand and What Does the Future hold?
Current Rheumatology Reports (2024)
-
Cartilage calcification in osteoarthritis: mechanisms and clinical relevance
Nature Reviews Rheumatology (2023)
-
Crystal arthropathies and osteoarthritis—where is the link?
Skeletal Radiology (2023)
-
Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation
Journal of Materials Science: Materials in Medicine (2022)
-
Pro-inflammatory effects of human apatite crystals extracted from patients suffering from calcific tendinopathy
Arthritis Research & Therapy (2021)