Skip to main content

Advertisement

Log in

Calcium crystal deposition diseases — beyond gout

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

The most common types of calcium-containing crystals that are associated with joint and periarticular disorders are calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP) crystals. Several diverse but difficult-to-treat acute and chronic arthropathies and other clinical syndromes are associated with the deposition of these crystals. Although the pathogenic mechanism of calcium crystal deposition is partially understood, much remains to be investigated, as no drug is available to prevent crystal deposition, permit crystal dissolution or specifically target the pathogenic effects that result in the clinical manifestations. In this Review, the main clinical manifestations of CPP and BCP crystal deposition are discussed, along with the biological effects of these crystals, current therapeutic approaches and future directions in therapy.

Key points

  • Deposition of calcium-containing crystals, including calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP), results in a wide variety of articular and periarticular disorders.

  • Calcium-containing crystal deposition diseases are common but underdiagnosed conditions, and the treatment options are limited; no drug is available to prevent crystal deposition or permit crystal dissolution.

  • CPP crystal deposition (CPPD) diseases can be accurately diagnosed using compensated polarized microscopy to detect CPP crystals in the synovial fluid, whereas identifying BCP crystals in the synovial fluid is difficult.

  • BCP crystals are found in 100% of cartilage samples from patients with osteoarthritis (OA) undergoing joint replacement surgery and probably represent a therapeutic target in OA.

  • BCP crystals exert potentially pathogenic effects on a number of articular cell types including fibroblasts, chondrocytes and synovial macrophages.

  • Drugs targeting the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, membrane-proximal kinases, IL-6 and crystal deposition represent potential future therapeutics for arthropathies related to CPP and BCP crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Clinical outcomes of calcium-containing crystal deposition.
Fig. 2: Features of calcium crystal deposition disease on imaging.
Fig. 3: Cellular processes and inflammation driven by BCP and CPP crystals.
Fig. 4: Cellular mechanism leading to crystal-induced tissue damage in the joint.

Similar content being viewed by others

References

  1. Rosenthal, A. K. & Ryan, L. M. Calcium pyrophosphate deposition disease. N. Engl. J. Med. 374, 2575–2584 (2016).

    CAS  PubMed  Google Scholar 

  2. Stack, J. & McCarthy, G. Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets. Curr. Opin. Rheumatol. 28, 122–126 (2016).

    CAS  PubMed  Google Scholar 

  3. Morgan, M. P., Cooke, M. M. & McCarthy, G. M. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J. Mammary Gland Biol. Neoplasia 10, 181–187 (2005).

    PubMed  Google Scholar 

  4. Durcan, L., Bolster, F., Kavanagh, E. C. & McCarthy, G. M. The structural consequences of calcium crystal deposition. Rheum. Dis. Clin. North Am. 40, 311–328 (2014).

    PubMed  Google Scholar 

  5. Mitton-Fitzgerald, E., Gohr, C. M., Bettendorf, B. & Rosenthal, A. K. The role of ANK in calcium pyrophosphate deposition disease. Curr. Rheumatol. Rep. 18, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. MacMullan, P. & McCarthy, G. Treatment and management of pseudogout: insights for the clinician. Ther. Adv. Musculoskelet. Dis. 4, 121–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malik, A., Schumacher, H. R., Dinnella, J. E. & Clayburne, G. M. Clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. J. Clin. Rheumatol. 15, 22–24 (2009).

    PubMed  Google Scholar 

  8. Wilkins, E., Dieppe, P., Maddison, P. & Evison, G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann. Rheum. Dis. 42, 280–284 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Richette, P., Bardin, T. & Doherty, M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology 48, 711–715 (2009).

    PubMed  Google Scholar 

  10. Neame, R., Carr, A., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abhishek, A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr. Opin. Rheumatol. 28, 133–139 (2016).

    CAS  PubMed  Google Scholar 

  12. Doherty, M. & Dieppe, P. A. Pyrophosphate arthropathy as a late complication of juvenile chronic arthritis. J. Rheumatol. 11, 219–221 (1984).

    CAS  PubMed  Google Scholar 

  13. Doherty, M., Watt, I. & Dieppe, P. A. Localised chondrocalcinosis in post-meniscectomy knees. Lancet 319, 1207–1210 (1982).

    Google Scholar 

  14. Abhishek, A. et al. Evidence of a systemic predisposition to chondrocalcinosis and association between chondrocalcinosis and osteoarthritis at distant joints: a cross-sectional study. Arthritis Care Res. 65, 1052–1058 (2013).

    CAS  Google Scholar 

  15. Chuck, A. J., Pattrick, M. G., Hamilton, E., Wilson, R. & Doherty, M. Crystal deposition in hypophosphatasia: a reappraisal. Ann. Rheum. Dis. 48, 571–576 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pawlotsky, Y. et al. Elevated parathyroid hormone 44–68 and osteoarticular changes in patients with genetic hemochromatosis. Arthritis Rheum. 42, 799–806 (1999).

    CAS  PubMed  Google Scholar 

  17. Ea, H. K., Blanchard, A., Dougados, M. & Roux, C. Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J. Rheumatol. 32, 1840–1842 (2005).

    PubMed  Google Scholar 

  18. Williams, C. J. et al. Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 48, 2627–2631 (2003).

    CAS  PubMed  Google Scholar 

  19. Ramos, Y. F. M. et al. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann. Rheum. Dis. 74, 1756–1762 (2015).

    CAS  PubMed  Google Scholar 

  20. Williams, C. J. et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 26, 797–806 (2018).

    CAS  PubMed  Google Scholar 

  21. Dieppe, P. A. et al. Pyrophosphate arthropathy: a clinical and radiological study of 105 cases. Ann. Rheum. Dis. 41, 371–376 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ryan, L. M. & McCarty D. J. in Arthritis and Allied conditions: A Textbook of Rheumatology (eds McCarty, D. J. & Koopman, W. J.) 1835–1855 (Lea and Febiger, 1993).

  23. Matsumura, M. & Hara, S. Crowned dens syndrome. N. Engl. J. Med. 367, e34 (2012).

    PubMed  Google Scholar 

  24. Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear” — sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).

    CAS  PubMed  Google Scholar 

  25. Inoue, A. et al. Usefulness of cervical computed tomography and magnetic resonance imaging for rapid diagnosis of crowned dens syndrome: a case report and review of the literature. Int. J. Surg. Case Rep. 30, 50–54 (2018).

    Google Scholar 

  26. Stack, J. & McCarthy, G. M. in Rheumatology 7th edn (eds Hochberg, M.C. et al.) 1632–1638 (Elsevier, London, UK, 2018).

  27. Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).

    CAS  PubMed  Google Scholar 

  28. Halverson, P. B. & McCarty, D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann. Rheum. Dis. 45, 603–605 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ea, H.-K. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLOS ONE 8, e57352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Doumas, C., Vazirani, R. M., Clifford, P. D. & Owens, P. Acute calcific periarthritis of the hand and wrist: a series and review of the literature. Emerg. Radiol. 14, 199–203 (2007).

    PubMed  Google Scholar 

  31. McCarthy, G. M., Carrera, G. F. & Ryan, L. M. Acute calcific periarthritis of the finger joints: a syndrome of women. J. Rheumatol. 20, 1077–1080 (1993).

    CAS  PubMed  Google Scholar 

  32. Rosenthal, A. K. Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168–172 (2018).

    CAS  PubMed  Google Scholar 

  33. Dieppe, P. A. et al. Apatite associated destructive arthritis. Rheumatology 23, 84–91 (1984).

    CAS  Google Scholar 

  34. Mccarty, D. J., Halverson, P. B., Carrera, G. F., Brewer, B. J. & Kozin, F. “Milwaukee shoulder” — association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum. 24, 464–473 (1981).

    CAS  PubMed  Google Scholar 

  35. MacMullan, P., McMahon, G. & McCarthy, G. Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 78, 358–363 (2011).

    CAS  Google Scholar 

  36. Ottaviani, S. et al. Efficacy of anakinra in calcium pyrophosphate crystal-induced arthritis: a report of 16 cases and review of the literature. Joint Bone Spine 80, 178–182 (2013).

    CAS  PubMed  Google Scholar 

  37. Sivera, F., Andrés, M. & Pascual, E. Current advances in therapies for calcium pyrophosphate crystal arthritis. Curr. Opin. Rheumatol. 28, 140–144 (2016).

    CAS  PubMed  Google Scholar 

  38. Chollet-Janin, A., Finckh, A., Dudler, J. & Guerne, P.-A. Methotrexate as an alternative therapy for chronic calcium pyrophosphate deposition disease: an exploratory analysis. Arthritis Rheum. 56, 688–692 (2007).

    PubMed  Google Scholar 

  39. Finckh, A. et al. Methotrexate in chronic-recurrent calcium pyrophosphate deposition disease: no significant effect in a randomized crossover trial. Arthritis Res. Ther. 16, 458 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Andrés, M., Sivera, F. & Pascual, E. Therapy for CPPD: options and evidence. Curr. Rheumatol. Rep. 20, 31 (2018).

    PubMed  Google Scholar 

  41. Ebenbichler, G. R. et al. Ultrasound therapy for calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1533–1538 (1999).

    CAS  PubMed  Google Scholar 

  42. Angelo, C. et al. Effectiveness of treatment of calcific tendinitis of the shoulder by disodium EDTA. Arthritis Care Res. 61, 84–91 (2008).

    Google Scholar 

  43. Park, S. M. et al. Management of acute calcific tendinitis around the hip joint. Am. J. Sports Med. 42, 2659–2665 (2014).

    PubMed  Google Scholar 

  44. Frassanito, P., Cavalieri, C., Maestri, R. & Felicetti, G. Effectiveness of extracorporeal shock wave therapy and kinesio taping in calcific tendinopathy of the shoulder: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 54, 333–340 (2018).

    PubMed  Google Scholar 

  45. Petrillo, S., Longo, U. G., Papalia, R. & Denaro, V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: a systematic review. Musculoskelet. Surg. 101, 105–112 (2017).

    CAS  PubMed  Google Scholar 

  46. Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).

    CAS  PubMed  Google Scholar 

  47. Liu-Bryan, R. & Lioté, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine 72, 295–302 (2005).

    PubMed  Google Scholar 

  48. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 (2006).

    CAS  Google Scholar 

  49. Place, D. E. & Kanneganti, T. D. Recent advances in inflammasome biology. Curr. Opin. Immunol. 50, 32–38 (2018).

    CAS  PubMed  Google Scholar 

  50. Malik, A. & Kanneganti, T. D. Inflammasome activation and assembly at a glance. J. Cell Sci. 130, 3955–3963 (2017).

    CAS  PubMed  Google Scholar 

  51. Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2015).

    PubMed  Google Scholar 

  52. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Netea, M. G. et al. IL-1β processing in host defense: beyond the inflammasomes. PLOS Pathog. 6, e1000661 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Desai, J. et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci. Rep. 7, 15003 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Garg, A. D. et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front. Immunol. 6, 588 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Desai, J., Mulay, S. R., Nakazawa, D. & Anders, H. J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell. Mol. Life Sci. 73, 2211–2219 (2016).

    CAS  PubMed  Google Scholar 

  58. Delgado-Rizo, V. et al. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 8, 81 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Williams, C. J. The role of ANKH in pathologic mineralization of cartilage. Curr. Opin. Rheumatol. 28, 145–151 (2016).

    CAS  PubMed  Google Scholar 

  60. Uzuki, M., Sawai, T., Ryan, L. M., Rosenthal, A. K. & Masuda, I. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease. J. Rheumatol. 41, 65–74 (2014).

    CAS  PubMed  Google Scholar 

  61. Rosenthal, A. K. et al. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res. Ther. 15, R154 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02243631 (2018).

  63. Conway, R. & McCarthy, G. M. Calcium-containing crystals and osteoarthritis: an unhealthy alliance. Curr. Rheumatol. Rep. 20, 13 (2018).

    PubMed  Google Scholar 

  64. McCarthy, G. M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann. Rheum. Dis. 60, 399–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bai, G., Howell, D. S., Howard, G. A., Roos, B. A. & Cheung, H. S. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 9, 416–422 (2001).

    CAS  PubMed  Google Scholar 

  66. Morgan, M. P. et al. Basic calcium phosphate crystal–induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1β. Arthritis Rheum. 50, 1642–1649 (2004).

    CAS  PubMed  Google Scholar 

  67. Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways. Circ. Res. 96, 1248–1256 (2005).

    CAS  PubMed  Google Scholar 

  68. Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).

    CAS  PubMed  Google Scholar 

  69. Pazár, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).

    PubMed  Google Scholar 

  70. Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).

    CAS  PubMed  Google Scholar 

  71. Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).

    CAS  PubMed  Google Scholar 

  72. van der Kraan, P. M. & van den Berg, W. B. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20, 223–232 (2012).

    PubMed  Google Scholar 

  73. Thouverey, C., Bechkoff, G., Pikula, S. & Buchet, R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17, 64–72 (2009).

    CAS  PubMed  Google Scholar 

  74. Gurley, K. A. et al. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J. Bone Miner. Res. 21, 1238–1247 (2006).

    CAS  PubMed  Google Scholar 

  75. Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Jotanovic, Z., Mihelic, R., Sestan, B. & Dembic, Z. Role of interleukin-1 inhibitors in osteoarthritis. Drugs Aging 29, 343–358 (2012).

    CAS  PubMed  Google Scholar 

  77. Corr, E. M., Cunningham, C. C., Helbert, L., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Shi, Y. To forge a solid immune recognition. Protein Cell 3, 564–570 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan, S., D., M. A. & Gilbert, N. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 233, 203–217 (2009).

    Google Scholar 

  80. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Corr, E. M., Cunningham, C. C. & Dunne, A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 251, 197–205 (2016).

    CAS  PubMed  Google Scholar 

  82. Van Lent, P. L. E. M. et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64, 1466–1476 (2012).

    PubMed  Google Scholar 

  83. Schelbergen, R. F. P. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).

    CAS  PubMed  Google Scholar 

  84. Austermann, J., Zenker, S. & Roth, J. S100-alarmins: potential therapeutic targets for arthritis. Expert Opin. Ther. Targets 21, 738–750 (2017).

    Google Scholar 

  85. van den Bosch, M. H. et al. Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J. Rheumatol. 43, 1874–1884 (2016).

    PubMed  Google Scholar 

  86. Rosenberg, J. H., Rai, V., Dilisio, M. F. & Agrawal, D. K. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets. Mol. Cell. Biochem. 434, 171–179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sunahori, K. et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8, R69 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Je-Hwang, R. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α–induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).

    Google Scholar 

  89. Chang, C.-C., Tsai, Y.-H., Liu, Y., Lin, S.-Y. & Liang, Y.-C. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor–mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology 54, 1913–1922 (2015).

    CAS  PubMed  Google Scholar 

  90. Cunningham, C. C., Corr, E. M., McCarthy, G. M. & Dunne, A. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthritis Cartilage 24, 2141–2152 (2016).

    CAS  PubMed  Google Scholar 

  91. Cheung, H. S., Sallis, J. D. & Struve, J. A. Specific inhibition of basic calcium phosphate and calcium pyrophosphate crystal-induction of metalloproteinase synthesis by phosphocitrate. Biochim. Biophys. Acta 1315, 105–111 (1996).

    PubMed  Google Scholar 

  92. Nair, D., Misra, R. P., Sallis, J. D. & Cheung, H. S. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J. Biol. Chem. 272, 18920–18925 (1997).

    CAS  PubMed  Google Scholar 

  93. Sun, Y., Franklin, A. M., Mauerhan, D. R. & Hanley, E. N. Biological effects of phosphocitrate on osteoarthritic articular chondrocytes. Open Rheumatol. J. 11, 62–74 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheung, H. S., Sallis, J. D., Demadis, K. D. & Wierzbicki, A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54, 2452–2461 (2006).

    CAS  PubMed  Google Scholar 

  95. Sun, Y. et al. Disease-modifying effects of phosphocitrate and phosphocitrate-β-ethyl ester on partial meniscectomy-induced osteoarthritis. BMC Musculoskelet. Disord. 16, 270 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Nasi, S., Ea, H.-K., Lioté, F., So, A. & Busso, N. Sodium thiosulfate prevents chondrocyte mineralization and reduces the severity of murine osteoarthritis. PLOS ONE 11, e0158196 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.D. is funded by the Health Research Board, Ireland. The authors thank O. Mahon for assistance with illustrations and for critical reviewing of the manuscript.

Reviewer information

Nature Reviews Rheumatology thanks E. Pascual, A. K. Rosenthal and B. Rothschild and for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Geraldine M. McCarthy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chondrocalcinosis

Calcification of articular fibrocartilage or hyaline cartilage, most commonly owing to calcium pyrophosphate dihydrate crystal deposition.

Hypophosphatasia

A rare genetic disorder characterized by defective mineralization of bone and/or teeth caused by a deficiency of serum and bone alkaline phosphatase.

Gitelman variant of Bartter syndrome

A genetic renal disorder characterized by hypokalaemic alkalosis (low serum potassium levels) caused by inactivating mutations in a gene encoding a thiazide-sensitive sodium–chloride cotransporter (SLC12A3).

Birefringent

A state that enables a material of ordered structure to split a single ray of unpolarized light into two rays; the colour of the birefringent material changes as its orientation changes in relation to the light source.

Acetabular labrum

A ring of fibrous cartilage that surrounds the acetabulum (cup) of the hip joint.

Symphysis pubis

A cartilaginous joint located between the left and right pubic bones.

Annulus fibrosus

The outer layer of the intervertebral disc composed of strong layers of collagen fibres that surrounds the soft inner core of the disc.

Calciphylaxis

A rare and potentially fatal disease cause by the accumulation of calcium in small blood vessels of the fat and skin.

Crepitus

A medical term used to describe the cracking or popping sensation or sound that occurs when moving a joint; it is caused by the presence of air in the subcutaneous tissue.

Barbotage

Needle aspiration and lavage; it is used in the treatment of calcific tendinitis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, G.M., Dunne, A. Calcium crystal deposition diseases — beyond gout. Nat Rev Rheumatol 14, 592–602 (2018). https://doi.org/10.1038/s41584-018-0078-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0078-5

  • Springer Nature Limited

This article is cited by

Navigation