Abstract
Hydrogel microparticles (HMPs) are promising for biomedical applications, ranging from the therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and bioinks for 3D printing. Biologics (cells and drugs) can be encapsulated into HMPs of predefined shapes and sizes using a variety of fabrication techniques (batch emulsion, microfluidics, lithography, electrohydrodynamic spraying and mechanical fragmentation). HMPs can be formulated in suspensions to deliver therapeutics, as aggregates of particles (granular hydrogels) to form microporous scaffolds that promote cell infiltration or embedded within a bulk hydrogel to obtain multiscale behaviours. HMP suspensions and granular hydrogels can be injected for minimally invasive delivery of biologics, and they exhibit modular properties when comprised of mixtures of distinct HMP populations. In this Review, we discuss the techniques that are available for fabricating HMPs, as well as the multiscale behaviours of HMP systems and their functional properties, highlighting their advantages over traditional bulk hydrogels. Furthermore, we discuss applications of HMPs in the fields of cell delivery, drug delivery, scaffold design and biofabrication.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).
Van Vlierberghe, S., Dubruel, P. & Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).
Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).
Annabi, N. et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371–383 (2010).
Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M. & O’Connor, A. J. Cryogels for biomedical applications. J. Mater. Chem. B 1, 2682–2695 (2013).
Wade, R. J., Bassin, E. J., Rodell, C. B. & Burdick, J. A. Protease-degradable electrospun fibrous hydrogels. Nat. Commun. 6, 6639 (2015).
Highley, C. B., Song, K. H., Daly, A. C. & Burdick, J. A. Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019).
Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).
Mealy, J. E. et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018).
Sideris, E. et al. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomater. Sci. Eng. 2, 2034–2041 (2016).
Franco, C. L., Price, J. & West, J. L. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater. 7, 3267–3276 (2011).
Leong, W., Lau, T. T. & Wang, D. A. A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater. 9, 6459–6467 (2013).
Liu, A. L. & Garcia, A. J. Methods for generating hydrogel particles for protein delivery. Ann. Biomed. Eng. 44, 1946–1958 (2016).
Xu, Q. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5, 1575–1581 (2009).
Truong, N. F., Lesher-Pérez, S. C., Kurt, E. & Segura, T. Pathways governing polyethylenimine polyplex transfection in microporous annealed particle scaffolds. Bioconjug. Chem. 30, 476–486 (2019).
Scott, E. A., Nichols, M. D., Kuntz-Willits, R. & Elbert, D. L. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen. Acta Biomater. 6, 29–38 (2010).
Stenekes, R. J. H., Franssen, O., van Bommel, E. M. G., Crommelin, D. J. A. & Hennink, W. E. The preparation of dextran microspheres in an all-aqueous system: effect of the formulation parameters on particle characteristics. Pharm. Res. 15, 557–561 (1998).
Elbert, D. L. Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater. 7, 31–56 (2011).
Nichols, M. D., Scott, E. A. & Elbert, D. L. Factors affecting size and swelling of poly(ethylene glycol) microspheres formed in aqueous sodium sulfate solutions without surfactants. Biomaterials 30, 5283–5291 (2009).
Jeon, O., Wolfson, D. W. & Alsberg, E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. Adv. Mater. 27, 2216–2223 (2015).
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).
Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).
De Geest, B. G., Urbanski, J. P., Thorsen, T., Demeester, J. & De Smedt, S. C. Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 21, 10275–10279 (2005).
Pittermannová, A. et al. Microfluidic fabrication of composite hydrogel microparticles in the size range of blood cells. RSC Adv. 6, 103532–103540 (2016).
Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).
Nisisako, T. & Torii, T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8, 287–293 (2008).
Kim, J.-W., Utada, A. S., Fernández-Nieves, A., Hu, Z. & Weitz, D. A. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. 119, 1851–1854 (2007).
Greenwood-Goodwin, M., Teasley, E. S. & Heilshorn, S. C. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater. Sci. 2, 1627–1639 (2014).
Foster, G. A. et al. Protease-degradable microgels for protein delivery for vascularization. Biomaterials 113, 170–175 (2017).
Deveza, L. et al. Microfluidic synthesis of biodegradable polyethylene-glycol microspheres for controlled delivery of proteins and DNA nanoparticles. ACS Biomater. Sci. Eng. 1, 157–165 (2015).
Jiang, W., Li, M., Chen, Z. & Leong, K. W. Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16, 4482–4506 (2016).
Selimovic´, Š., Oh, J., Bae, H., Dokmeci, M. & Khademhosseini, A. Microscale strategies for generating cell-encapsulating hydrogels. Polymers 4, 1554–1579 (2012).
Headen, D. M., García, J. R. & García, A. J. Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation. Microsyst. Nanoeng. 4, 17076 (2018).
Krutkramelis, K, Xia, B. & Oakey, J. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. Lab Chip 16, 1457–1465 (2016).
Cha, C. et al. Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15, 283–290 (2014).
Jiang, Z., Xia, B., McBride, R. & Oakey, J. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. J. Mater. Chem. B 5, 173–180 (2017).
Kumachev, A., Tumarkin, E., Walker, G. C. & Kumacheva, E. Characterization of the mechanical properties of microgels acting as cellular microenvironments. Soft Matter 9, 2959–2965 (2013).
Headen, D. M., Aubry, G., Lu, H. & Garcia, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).
Allazetta, S., Hausherr, T. C. & Lutolf, M. P. Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14, 1122–1131 (2013).
Seiffert, S., Thiele, J., Abate, A. R. & Weitz, D. A. Smart microgel capsules from macromolecular precursors. J. Am. Chem. Soc. 132, 6606–6609 (2010).
Seiffert, S. & Weitz, D. A. Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 51, 5883–5889 (2010).
Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W. & Weitz, D. A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46, 8970–8974 (2007).
Seiffert, S., Romanowsky, M. B. & Weitz, D. A. Janus microgels produced from functional precursor polymers. Langmuir 26, 14842–14847 (2010).
Zhao, C. X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 65, 1420–1446 (2013).
Duncanson, W. J. et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12, 2135–2145 (2012).
Chen, Q. et al. Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip 16, 1346–1349 (2016).
Zhang, L. et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018).
Yoshida, S., Takinoue, M. & Onoe, H. Compartmentalized spherical collagen microparticles for anisotropic cell culture microenvironments. Adv. Healthc. Mater. 6, 1601463 (2017).
Kamperman, T., Trikalitis, V. D., Karperien, M., Visser, C. W. & Leijten, J. Ultrahigh-throughput production of monodisperse and multifunctional Janus microparticles using in-air microfluidics. ACS Appl. Mater. Interfaces 10, 23433–23438 (2018).
Visser, C. W., Kamperman, T., Karbaat, L. P., Lohse, D. & Karperien, M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Science Adv. 4, eaao1175 (2018).
Bardin, D., Kendall, M. R., Dayton, P. A. & Lee, A. P. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module. Biomicrofluidics 7, 034112 (2013).
Muluneh, M. & Issadore, D. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. Lab Chip 13, 4750–4754 (2013).
Li, W., Greener, J., Voicu, D. & Kumacheva, E. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab Chip 9, 2715–2721 (2009).
de Rutte, J. M., Koh, J. & Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1900071.
Helgeson, M. E., Chapin, S. C. & Doyle, P. S. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16, 106–117 (2011).
Lee, S. A., Chung, S. E., Park, W., Lee, S. H. & Kwon, S. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip 9, 1670–1675 (2009).
Chung, S. E., Park, W., Shin, S., Lee, S. A. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008).
Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).
Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8, 1056–1061 (2008).
Jang, J.-H., Dendukuri, D., Hatton, T. A., Thomas, E. L. & Doyle, P. S. A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew. Chem. Int. Ed. 119, 9185–9189 (2007).
Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).
Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).
Nielson, R., Kaehr, B. & Shear, J. B. Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5, 120–125 (2009).
Laza, S. C. et al. Two-photon continuous flow lithography. Adv. Mater. 24, 1304–1308 (2012).
Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007).
Merkel, T. J. et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 162, 37–44 (2012).
Khademhosseini, A. et al. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J. Biomed. Mater. Res. A 79, 522–532 (2006).
Baudis, S. et al. Modular material system for the microfabrication of biocompatible hydrogels based on thiol–ene-modified poly(vinyl alcohol). J. Polym. Sci. Part A Polym. Chem. 54, 2060–2070 (2016).
Qin, X.-H. et al. Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polym. Chem. 5, 6523–6533 (2014).
Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).
Ifkovits, J. L. & Burdick, J. A. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007).
Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002).
Bahney, C. S. et al. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell Mater. 22, 43–55 (2011).
Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000).
Le Goff, G. C., Lee, J., Gupta, A., Hill, W. A. & Doyle, P. S. High-throughput contact flow lithography. Adv. Sci. 2, 1500149 (2015).
Naqvi, S. M. et al. Living cell factories - electrosprayed microcapsules and microcarriers for minimally invasive delivery. Adv. Mater. 28, 5662–5671 (2016).
Gansau, J., Kelly, L. & Buckley, C. T. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying. Biofabrication 10, 035011 (2018).
Pancholi, K., Ahras, N., Stride, E. & Edirisinghe, M. Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. J. Mater. Sci. Mater. Med. 20, 917–923 (2009).
Qayyum, A. S. et al. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication 9, 025019 (2017).
Young, C. J., Poole-Warren, L. A. & Martens, P. J. Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation. Biotechnol. Bioeng. 109, 1561–1570 (2012).
Kim, P. H. et al. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Control. Release 187, 1–13 (2014).
Gu, Z. et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7, 6758–6766 (2013).
Jayasinghe, S. N. & Townsend-Nicholson, A. Stable electric-field driven cone-jetting of concentrated biosuspensions. Lab Chip 6, 1086–1090 (2006).
Jayasinghe, S. N., Qureshi, A. N. & Eagles, P. A. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2, 216–219 (2006).
Sinclair, A. et al. Self-healing zwitterionic microgels as a versatile platform for malleable cell constructs and injectable therapies. Adv. Mater. 30, 1803087 (2018).
Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Adv. 1, e1500758 (2015).
Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2018).
Behringer, R. P. & Chakraborty, B. The physics of jamming for granular materials: a review. Rep. Prog. Phys. 82, 012601 (2019).
Hurley, R. C., Hall, S. A., Andrade, J. E. & Wright, J. Quantifying interparticle forces and heterogeneity in 3D granular materials. Phys. Rev. Lett. 117, 098005 (2016).
Weeks, E. R. in Statistical Physics of Complex Fluids (eds Maruyama, S. & Tokuyama, M.) 1–53 (Tohoku Univ. Press, 2007).
Torquato, S. & Stillinger, F. H. Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2633–2672 (2010).
Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012).
Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).
van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2009).
Yuan, Y., Liu, L., Zhuang, Y., Jin, W. & Li, S. Coupling effects of particle size and shape on improving the density of disordered polydisperse packings. Phys. Rev. E 98, 042903 (2018).
Haustein, M., Gladkyy, A. & Schwarze, R. Discrete element modeling of deformable particles in YADE. SoftwareX 6, 118–123 (2017).
Sun, Q., Jin, F., Liu, J. & Zhang, G. Understanding force chains in dense granular materials. Int. J. Mod. Phys. B 24, 5743–5759 (2010).
Truong, N. F. et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomater. 94, 160–172 (2019).
Kim, J., Yaszemski, M. J. & Lu, L. Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens. Tissue Eng. Part C Methods 15, 583–594 (2009).
Wang, L., Lu, S., Lam, J., Kasper, F. K. & Mikos, A. G. Fabrication of cell-laden macroporous biodegradable hydrogels with tunable porosities and pore sizes. Tissue Eng. Part C Methods 21, 263–273 (2014).
Hu, J. et al. Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure. Macromolecules 44, 7775–7781 (2011).
Shin, H., Olsen, B. D. & Khademhosseini, A. Gellan gum microgel-reinforced cell-laden gelatin hydrogels. J. Mater. Chem. B 2, 2508–2516 (2014).
Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 29, 1606471 (2017).
Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T. & Segura, T. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).
Le, L. V. et al. Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials 169, 11–21 (2018).
Caldwell, A. S., Campbell, G. T., Shekiro, K. M. T. & Anseth, K. S. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Adv. Healthc. Mater. 6, 1700254 (2017).
Madl, C. M., Heilshorn, S. C. & Blau, H. M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557, 335–342 (2018).
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).
Wang, C., Varshney, R. R. & Wang, D.-A. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv. Drug Deliv. Rev. 62, 699–710 (2010).
Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).
Prince, E. & Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 4, 99–115 (2019).
Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2016).
Daly, A. C., Sathy, B. N. & Kelly, D. J. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J. Tissue Eng. 9, 2041731417753718 (2018).
Sheehy, E. J., Buckley, C. T. & Kelly, D. J. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J. Tissue Eng. Regen. Med. 5, 747–758 (2011).
Daly, A. C. & Kelly, D. J. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197, 194–206 (2019).
Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 113, 3179–3184 (2016).
Madl, C. M. & Heilshorn, S. C. Engineering hydrogel microenvironments to recapitulate the stem cell niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).
Rapp, T. L., Highley, C. B., Manor, B. C., Burdick, J. A. & Dmochowski, I. J. Ruthenium-crosslinked hydrogels with rapid, visible-light degradation. Chem 24, 2328–2333 (2018).
Mohamed, M. G. A. et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab Chip 19, 1621–1632 (2019).
Deng, Y. et al. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device. Lab Chip 11, 4117–4121 (2011).
Choi, C. H. et al. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab Chip 16, 1549–1555 (2016).
Zhu, K. et al. All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 11, 4826–4832 (2019).
Maeda, K., Onoe, H., Takinoue, M. & Takeuchi, S. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24, 1340–1346 (2012).
Ma, C., Tian, C., Zhao, L. & Wang, J. Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab Chip 16, 2609–2617 (2016).
Allazetta, S., Kolb, L., Zerbib, S., Bardy, J. & Lutolf, M. P. Cell-instructive microgels with tailor-made physicochemical properties. Small 11, 5647–5656 (2015).
Blaeser, A. et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5, 326–333 (2016).
Chen, M. H. et al. Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater. Sci. Eng. 3, 3146–3160 (2017).
Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806–815 (2011).
Zhao, X. et al. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26, 2809–2819 (2016).
Annamalai, R. T. et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 208, 32–44 (2019).
Wise, J. K., Alford, A. I., Goldstein, S. A. & Stegemann, J. P. Synergistic enhancement of ectopic bone formation by supplementation of freshly isolated marrow cells with purified MSC in collagen–chitosan hydrogel microbeads. Connect. Tissue Res. 57, 516–525 (2016).
Wang, L., Rao, R. R. & Stegemann, J. P. Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair. Cells Tissues Organs 197, 333–343 (2013).
Daley, E. L. H., Coleman, R. M. & Stegemann, J. P. Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy. J. Mater. Chem. B 3, 7920–7929 (2015).
Li, F. et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 77, 48–62 (2018).
Yin, H. et al. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater. 77, 127–141 (2018).
Wang, Y. et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 171, 118–132 (2018).
Feyen, D. A. M. et al. Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv. Healthc. Mater. 5, 1071–1079 (2016).
Shrestha, P., Regmi, S. & Jeong, J.-H. Injectable hydrogels for islet transplantation: a concise review. Int. J. Pharm. Investig. 1-17 (2019).
Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).
Headen, D. M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).
Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993–2007 (2008).
Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012).
Dimatteo, R., Darling, N. J. & Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 127, 167–184 (2018).
Chen, W., Palazzo, A., Hennink, W. E. & Kok, R. J. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm. 14, 459–467 (2017).
Freiberg, S. & Zhu, X. X. Polymer microspheres for controlled drug release. Int. J. Pharm. 282, 1–18 (2004).
Nguyen, A. H., McKinney, J., Miller, T., Bongiorno, T. & McDevitt, T. C. Gelatin methacrylate microspheres for controlled growth factor release. Acta Biomater. 13, 101–110 (2015).
Solorio, L. D., Dhami, C. D., Dang, P. N., Vieregge, E. L. & Alsberg, E. Spatiotemporal regulation of chondrogenic differentiation with controlled delivery of transforming growth factor-β1 from gelatin microspheres in mesenchymal stem cell aggregates. Stem Cells Transl. Med. 1, 632–639 (2012).
Censi, R., Di Martino, P., Vermonden, T. & Hennink, W. E. Hydrogels for protein delivery in tissue engineering. J. Control. Release 161, 680–692 (2012).
Hettiaratchi, M. H., Miller, T., Temenoff, J. S., Guldberg, R. E. & McDevitt, T. C. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 35, 7228–7238 (2014).
Feng, Q. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 53, 329–342 (2017).
Öztürk, E. et al. Sulfated hydrogel matrices direct mitogenicity and maintenance of chondrocyte phenotype through activation of FGF signaling. Adv. Funct. Mater. 26, 3649–3662 (2016).
Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).
Buket Basmanav, F., Kose, G. T. & Hasirci, V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29, 4195–4204 (2008).
Jaklenec, A. et al. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds. Biomaterials 29, 1518–1525 (2008).
Wang, Y., Cooke, M. J., Sachewsky, N., Morshead, C. M. & Shoichet, M. S. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. J. Control. Release 172, 1–11 (2013).
McGillicuddy, F. C. et al. Novel “plum pudding” gels as potential drug-eluting stent coatings: controlled release of fluvastatin. J. Biomed. Mater. Res. A 79, 923–933 (2006).
Sivakumaran, D., Maitland, D. & Hoare, T. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12, 4112–4120 (2011).
Almeida, H. V. et al. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 10, 4400–4409 (2014).
Bian, L. et al. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32, 6425–6434 (2011).
Patel, Z. S., Yamamoto, M., Ueda, H., Tabata, Y. & Mikos, A. G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 4, 1126–1138 (2008).
Kavanaugh, T. E., Werfel, T. A., Cho, H., Hasty, K. A. & Duvall, C. L. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv. Transl. Res. 6, 132–147 (2016).
Li, M., Liu, X., Liu, X. & Ge, B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin. Orthop. Relat. Res. 468, 1978–1985 (2010).
Patel, Z. S. et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43, 931–940 (2008).
Cai, B. et al. Injectable gel constructs with regenerative and anti-infective dual effects based on assembled chitosan microspheres. ACS Appl. Mater. Interfaces 10, 25099–25112 (2018).
DeFail, A. J., Chu, C. R., Izzo, N. & Marra, K. G. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials 27, 1579–1585 (2006).
Holland, T. A., Tabata, Y. & Mikos, A. G. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release 101, 111–125 (2005).
Park, H., Temenoff, J. S., Holland, T. A., Tabata, Y. & Mikos, A. G. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095–7103 (2005).
Kang, M. L., Ko, J.-Y., Kim, J. E. & Im, G.-I. Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35, 9984–9994 (2014).
Hoshino, K. et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Ther. 13, 1320–1327 (2006).
Iwakura, A. et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18, 93–99 (2003).
Liu, Y., Sun, L., Huan, Y., Zhao, H. & Deng, J. Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magnetic resonance tagging. Eur. J. Cardiothorac. Surg. 30, 103–107 (2006).
Uitterdijk, A. et al. VEGF165A microsphere therapy for myocardial infarction suppresses acute cytokine release and increases microvascular density but does not improve cardiac function. Am. J. Physiol. Heart Circ. Physiol. 309, H396–H406 (2015).
Chen, M. H. et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol. Biosci. 19, e1800248 (2019).
Du, J., Du, P. & Smyth, H. D. Hydrogels for controlled pulmonary delivery. Ther. Deliv. 4, 1293–1305 (2013).
Qurrat, ul-Ain, Sharma, S., Khuller, G. K. & Garg, S. K. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J. Antimicrob. Chemother. 51, 931–938 (2003).
Selvam, P., El-Sherbiny, I. M. & Smyth, H. D. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J. Aerosol. Med. Pulm. Drug Deliv. 24, 25–34 (2011).
El-Sherbiny, I. M., McGill, S. & Smyth, H. D. Swellable microparticles as carriers for sustained pulmonary drug delivery. J. Pharm. Sci. 99, 2343–2356 (2010).
Hwang, S. M., Kim, D. D., Chung, S. J. & Shim, C. K. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release 129, 100–106 (2008).
Secret, E., Crannell, K. E., Kelly, S. J., Villancio-Wolter, M. & Andrew, J. S. Matrix metalloproteinase-sensitive hydrogel microparticles for pulmonary drug delivery of small molecule drugs or proteins. J. Mater. Chem. B 3, 5629–5634 (2015).
Secret, E., Kelly, S. J., Crannell, K. E. & Andrew, J. S. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl. Mater. Interfaces 6, 10313–10321 (2014).
Chaturvedi, K., Ganguly, K., Nadagouda, M. N. & Aminabhavi, T. M. Polymeric hydrogels for oral insulin delivery. J. Control. Release 165, 129–138 (2013).
Bell, C. L. & Peppas, N. A. Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-ethylene glycol). Biomaterials 17, 1203–1218 (1996).
Mundargi, R. C., Rangaswamy, V. & Aminabhavi, T. M. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. J. Microencapsul. 28, 384–394 (2011).
Sajeesh, S., Bouchemal, K., Marsaud, V., Vauthier, C. & Sharma, C. P. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. J. Control. Release 147, 377–384 (2010).
Bravo-Osuna, I., Vauthier, C., Farabollini, A., Palmieri, G. F. & Ponchel, G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28, 2233–2243 (2007).
Zhang, Y., Wei, W., Lv, P., Wang, L. & Ma, G. Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin. Eur. J. Pharm. Biopharm. 77, 11–19 (2011).
He, P., Davis, S. S. & Illum, L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 166, 75–88 (1998).
Solorio, L. D., Fu, A. S., Hernández-Irizarry, R. & Alsberg, E. Chondrogenic differentiation of human mesenchymal stem cell aggregates via controlled release of TGF-β1 from incorporated polymer microspheres. J. Biomed. Mater. Res. A 92A, 1139–1144 (2010).
Solorio, L. D., Vieregge, E. L., Dhami, C. D., Dang, P. N. & Alsberg, E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-β1. J. Control. Release 158, 224–232 (2012).
Bratt-Leal, A. M., Nguyen, A. H., Hammersmith, K. A., Singh, A. & McDevitt, T. C. A microparticle approach to morphogen delivery within pluripotent stem cell aggregates. Biomaterials 34, 7227–7235 (2013).
Collins, M. N. & Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 92, 1262–1279 (2013).
Chan, B. P. & Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17, 467–479 (2008).
Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015).
Sheikhi, A. et al. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials 192, 560–568 (2019).
Xin, S., Wyman, O. M. & Alge, D. L. Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Adv. Healthc. Mater. 7, e1800160 (2018).
Hsu, R. S. et al. Adaptable microporous hydrogels of propagating NGF-gradient by injectable building blocks for accelerated axonal outgrowth. Adv. Sci. 6, 1900520 (2019).
McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).
Werner, M. et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 4, 1600347 (2017).
Mitra, A. et al. Cell geometry dictates TNFα-induced genome response. Proc. Natl Acad. Sci. USA 114, E3882–E3891 (2017).
Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).
Bae, M.-S., Lee, K. Y., Park, Y. J. & Mooney, D. J. RGD island spacing controls phenotype of primary human fibroblasts adhered to ligand-organized hydrogels. Macromol. Res. 15, 469–472 (2007).
Cruz, D. M. et al. Chitosan microparticles as injectable scaffolds for tissue engineering. J. Tissue Eng. Regen. Med. 2, 378–380 (2008).
Malafaya, P. B., Santos, T. C., van Griensven, M. & Reis, R. L. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials 29, 3914–3926 (2008).
Kucharska, M. et al. Fabrication and characterization of chitosan microspheres agglomerated scaffolds for bone tissue engineering. Mater. Lett. 64, 1059–1062 (2010).
Dumont, C. M. et al. Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomater. 86, 312–322 (2019).
Hu, Z., Ma, C., Rong, X., Zou, S. & Liu, X. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl. Mater. Interfaces 10, 2377–2390 (2018).
Roam, J. L., Nguyen, P. K. & Elbert, D. L. Controlled release and gradient formation of human glial-cell derived neurotrophic factor from heparinated poly(ethylene glycol) microsphere-based scaffolds. Biomaterials 35, 6473–6481 (2014).
Roam, J. L. et al. A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits. Biomaterials 72, 112–124 (2015).
Custódio, C. A. et al. Functionalized microparticles producing scaffolds in combination with cells. Adv. Funct. Mater. 24, 1391–1400 (2014).
Jgamadze, D., Liu, L., Vogler, S., Chu, L. Y. & Pautot, S. Thermoswitching microgel carriers improve neuronal cell growth and cell release for cell transplantation. Tissue Eng. C Methods 21, 65–76 (2015).
Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).
Groll, J. et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8, 013001 (2016).
Xu, F. et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 23, 4254–4260 (2011).
Tasoglu, S., Diller, E., Guven, S., Sitti, M. & Demirci, U. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5, 3124 (2014).
Xu, F. et al. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 32, 7847–7855 (2011).
Kamperman, T. et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv. Healthc. Mater. 6, 1600913 (2017).
Xin, S., Chimene, D., Garza, J. E., Gaharwar, A. K. & Alge, D. L. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 7, 1179–1187 (2019).
Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).
Bhattacharjee, T. et al. Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015).
Bhattacharjee, T. et al. Liquid-like solids support cells in 3D. ACS Biomater. Sci. Eng. 2, 1787–1795 (2016).
Gilbert, E., Hui, A. & Waldorf, H. A. The basic science of dermal fillers: past and present part I: background and mechanisms of action. J. Drugs Dermatol. 11, 1059–1068 (2012).
Tezel, A. & Fredrickson, G. H. The science of hyaluronic acid dermal fillers. J. Cosmet. Laser Ther. 10, 35–42 (2008).
Rose, J. C. et al. Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett. 17, 3782–3791 (2017).
Le, L. V., Mkrtschjan, M. A., Russell, B. & Desai, T. A. Hang on tight: reprogramming the cell with microstructural cues. Biomed. Microdevices 21, 43 (2019).
Tan, H. et al. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat. Commun. 8, 663 (2017).
Yadavali, S., Jeong, H. H., Lee, D. & Issadore, D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat. Commun. 9, 1222 (2018).
Andrade, J. E., Avila, C. F., Hall, S. A., Lenoir, N. & Viggiani, G. Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics. J. Mech. Phys. Solids 59, 237–250 (2011).
Liu, J., Bosco, E. & Suiker, A. S. J. Multi-scale modelling of granular materials: numerical framework and study on micro-structural features. Comput. Mech. 63, 409–427 (2019).
Zhu, H. et al. Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets. Nat. Biomed. Eng. 3, 126–136 (2019).
Lu, L., Stamatas, G. N. & Mikos, A. G. Controlled release of transforming growth factor β1 from biodegradable polymer microparticles. J. Biomed. Mater. Res. 50, 440–451 (2000).
Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).
Wang, S. et al. An in-situ photocrosslinking microfluidic technique to generate non-spherical, cytocompatible, degradable, monodisperse alginate microgels for chondrocyte encapsulation. Biomicrofluidics 12, 014106 (2018).
Wang, H. et al. One-step generation of core–shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4, 1800632 (2019).
Jha, A. K., Malik, M. S., Farach-Carson, M. C., Duncan, R. L. & Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6, 5045–5055 (2010).
Loebel, C., Broguiere, N., Alini, M., Zenobi-Wong, M. & Eglin, D. Microfabrication of photo-cross-linked hyaluronan hydrogels by single- and two-photon tyramine oxidation. Biomacromolecules 16, 2624–2630 (2015).
Ma, T., Gao, X., Dong, H., He, H. & Cao, X. High-throughput generation of hyaluronic acid microgels via microfluidics-assisted enzymatic crosslinking and/or Diels–Alder click chemistry for cell encapsulation and delivery. Appl. Mater. Today 9, 49–59 (2017).
Jia, X. et al. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336–3344 (2006).
Chen, J. et al. Tailor-making fluorescent hyaluronic acid microgels via combining microfluidics and photoclick chemistry for sustained and localized delivery of herceptin in tumors. ACS Appl. Mater. Interfaces 10, 3929–3937 (2018).
Sonnet, C. et al. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J. Orthop. Res. 31, 1597–1604 (2013).
Chung, S. E. et al. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106 (2007).
Ryu, S. et al. Dual mode gelation behavior of silk fibroin microgel embedded poly(ethylene glycol) hydrogels. J. Mater. Chem. B 4, 4574–4584 (2016).
Kumachev, A. et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32, 1477–1483 (2011).
Acknowledgements
J.A.B. acknowledges funding through the National Science Foundation through the PENN MRSEC (DMR-1720530) and STC Program (CMMI: 15-48571). T.S. acknowledges funding from the National Institutes of Health (R01NS094599) and Duke Biomedical Engineering. The authors would like to thank their laboratories for the helpful input and suggestions on the manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the preparation of this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Daly, A.C., Riley, L., Segura, T. et al. Hydrogel microparticles for biomedical applications. Nat Rev Mater 5, 20–43 (2020). https://doi.org/10.1038/s41578-019-0148-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-019-0148-6
- Springer Nature Limited
This article is cited by
-
Bio-nanoparticles loaded with synovial-derived exosomes ameliorate osteoarthritis progression by modifying the oxidative microenvironment
Journal of Nanobiotechnology (2024)
-
Utilizing bioprinting to engineer spatially organized tissues from the bottom-up
Stem Cell Research & Therapy (2024)
-
Dynamic monitoring soft tissue healing via visualized Gd-crosslinked double network MRI microspheres
Journal of Nanobiotechnology (2024)
-
LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing
Nature Communications (2024)
-
Enhanced bone regeneration in rat calvarial defects through BMP2 release from engineered poly(ethylene glycol) hydrogels
Scientific Reports (2024)