Skip to main content

Advertisement

Log in

The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria

  • Review Article
  • Published:

From Nature Reviews Immunology

View current issue Sign up to alerts

Abstract

Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Acquisition of clinical immunity to malaria.
Fig. 2: Changes to innate immune cells upon repeated exposure to malaria parasites.
Fig. 3: CD4+ T cells and B cells in immunity to malaria.

Similar content being viewed by others

References

  1. World Health Organization. World malaria report 2023. WHO https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (2023).

  2. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015). This paper reports the final results from the phase III trial of RTS,S/AS01, leading to the world’s first licensed malaria vaccine.

    Article  Google Scholar 

  3. Ally, O. et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 374, 2519–2529 (2016).

    Article  Google Scholar 

  4. Stoute, J. A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Oneko, M. et al. Safety, immunogenicity and efficacy of PfSPZ vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nat. Med. 27, 1636–1645 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Cunnington, A. J. & Riley, E. M. Suppression of vaccine responses by malaria: insignificant or overlooked? Expert Rev. Vaccines 9, 409–429 (2014).

    Article  Google Scholar 

  8. Murphy, S. C. et al. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: a randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog. 17, e1009594 (2021). This study shows the negative impact of blood-stage infection on the efficacy of live, drug-attenuated P. falciparum sporozoite vaccination (PfSPZ-CVac).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montes de Oca, M., Good, M. F., McCarthy, J. S. & Engwerda, C. R. The impact of established immunoregulatory networks on vaccine efficacy and the development of immunity to malaria. J. Immunol. 197, 4518–4526 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Jakobsen, P. H. et al. Inflammatory reactions in placental blood of Plasmodium falciparum‐infected women and high concentrations of soluble E‐selectin and a circulating P. falciparum protein in the cord sera. Immunology 93, 264–269 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feeney, M. E. The immune response to malaria in utero. Immunol. Rev. 293, 216–229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee, H. J. et al. Integrated pathogen load and dual transcriptome analysis of systemic host–pathogen interactions in severe malaria. Sci. Transl Med. 10, eaar3619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anyona, S. et al. Entire expressed peripheral blood transcriptome in pediatric severe malarial anemia. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3150748/v1 (2023).

  14. Day, N. P. J. et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J. Infect. Dis. 180, 1288–1297 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lyke, K. E. et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 72, 5630–5637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Portugal, S. et al. Exposure-dependent control of malaria-induced inflammation in children. PLoS Pathog. 10, e1004079 (2014). This study uses a systems biology approach to analyse paired PBMCs from Malian children, with results that suggest that children acquire P. falciparum-specific regulatory responses and enhanced anti-parasite responses in the setting of P. falciparum re-exposure.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gonçalves, B. P. et al. Parasite burden and severity of malaria in Tanzanian children. N. Engl. J. Med. 370, 1799–1808 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gupta, S., Snow, R. W., Donnelly, C. A., Marsh, K. & Newbold, C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5, 340–343 (1999). This study shows that immunity to severe forms of malaria is acquired by children living in disease-endemic areas after only one or two P. falciparum infections.

    Article  CAS  PubMed  Google Scholar 

  19. Doolan, D. L., Dobaño, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeffery, G. M. & Collins, W. E. A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am. J. Trop. Med. Hyg. 61, 20–35 (1999).

    Article  PubMed  Google Scholar 

  21. Ockenhouse, C. F. et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect. Immun. 74, 5561–5573 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran, T. M. et al. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria. Sci. Rep. 6, 31291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boldt, A. B. W. et al. The blood transcriptome of childhood malaria. EBioMedicine 40, 614–625 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prah, D. A. et al. Asymptomatic Plasmodium falciparum infection evades triggering a host transcriptomic response. J. Infect. 87, 259–262 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Nideffer, J. et al. Disease tolerance acquired through repeated plasmodium infection involves epigenetic reprogramming of innate immune cells. Preprint at bioRxiv https://doi.org/10.1101/2023.04.19.537546 (2023).

  26. Bediako, Y. et al. Repeated clinical malaria episodes are associated with modification of the immune system in children. BMC Med. 17, 60 (2019). This study uses whole-blood transcriptomics, cellular phenotyping and cytokine analysis among Kenyan children and reports that those who had experienced multiple prior episodes of malaria had upregulation of interferon-inducible genes, increases in circulating IL-10 and activation of B cells, neutrophils and CD8+ T cells.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bach, F. A. et al. A systematic analysis of the human immune response to Plasmodium vivax. J. Clin. Invest. 133, e152463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feintuch, C. M. et al. Activated neutrophils are associated with pediatric cerebral malaria vasculopathy in Malawian children. mBio 7, e01300–e01315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nallandhighal, S. et al. Whole-blood transcriptional signatures composed of erythropoietic and NRF2-regulated genes differ between cerebral malaria and severe malarial anemia. J. Infect. Dis. 219, 154–164 (2018).

    PubMed Central  Google Scholar 

  30. Tran, T. M. et al. A molecular signature in blood reveals a role for p53 in regulating malaria-induced inflammation. Immunity 51, 750–765.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirosingh, A. S. et al. Malaria-specific type 1 regulatory T cells are more abundant in first pregnancies and associated with placental malaria. EBioMedicine 95, 104772 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Studniberg, S. I. et al. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol. Syst. Biol. 18, e10824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gazzinelli, R. T., Kalantari, P., Fitzgerald, K. A. & Golenbock, D. T. Innate sensing of malaria parasites. Nat. Rev. Immunol. 14, 744–757 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dobbs, K. R. et al. Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria. JCI Insight 2, e95352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dooley, N. L. et al. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat. Commun. 14, 7387 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stanisic, D. I. et al. γδ T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria. J. Infect. Dis. 210, 295–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guha, R. et al. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. PLoS Pathog. 17, e1009430 (2021). This study finds that monocytes of malaria-exposed Malian adults expressed lower levels of inflammatory cytokines and higher levels of regulatory molecules CD163, CD206, IL-10 and arginase 1, following in vitro P. falciparum stimulation in comparison with monocytes from Malian children or malaria-naive US adults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fontana, M. F. et al. A novel model of asymptomatic Plasmodium parasitemia that recapitulates elements of the human immune response to chronic infection. PLoS ONE 11, e0162132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184, 3915–3935.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schrum, J. E. et al. Cutting edge: Plasmodium falciparum induces trained innate immunity. J. Immunol. 200, 1243–1248 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Crabtree, J. N. et al. Lymphocyte crosstalk is required for monocyte-intrinsic trained immunity to Plasmodium falciparum. J. Clin. Invest. 132, e139298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walk, J. et al. Controlled human malaria infection induces long-term functional changes in monocytes. Front. Mol. Biosci. 7, 604553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinzon-Charry, A. et al. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. J. Exp. Med. 210, 1635–1646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loughland, J. R. et al. Profoundly reduced CD1c+ myeloid dendritic cell HLA-DR and CD86 expression and increased tumor necrosis factor production in experimental human blood-stage malaria infection. Infect. Immun. 84, 1403–1412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woodberry, T. et al. Low-level Plasmodium falciparum blood-stage infection causes dendritic cell apoptosis and dysfunction in healthy volunteers. J. Infect. Dis. 206, 333–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Turner, T. C. et al. Dendritic cell responses to Plasmodium falciparum in a malaria-endemic setting. Malar. J. 20, 9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson, N. S. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol. 7, 165–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ashayeripanah, M. et al. Systemic inflammatory response syndrome triggered by blood-borne pathogens induces prolonged dendritic cell paralysis and immunosuppression. Cell Rep. 43, 113754 (2023).

    Article  Google Scholar 

  52. Knackstedt, S. L. et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci. Immunol. 4, eaaw0336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feng, G. et al. Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites. Nat. Commun. 12, 1742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ofori, E. A. et al. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun. Biol. 6, 743 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amulic, B., Moxon, C. A. & Cunnington, A. J. A more granular view of neutrophils in malaria. Trends Parasitol. 36, 501–503 (2020).

    Article  PubMed  Google Scholar 

  56. Moorlag, S. J. C. F. M. et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 33, 108387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goodier, M. R., Lundqvist, C., Hammarström, M., Troye‐Blomberg, M. & Langhorne, J. Cytokine profiles for human Vγ9+ T cells stimulated by Plasmodium falciparum. Parasite Immunol. 17, 413–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Behr, C. & Dubois, P. Preferential expansion of Vγ9 Vδ2 T cells following stimulation of peripheral blood lymphocytes with extracts of Plasmodium falciparum. Int. Immunol. 4, 361–366 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Jagannathan, P. et al. Loss and dysfunction of Vδ2+ γδ T cells are associated with clinical tolerance to malaria. Sci. Transl Med. 6, 251ra117 (2014). This study finds that repeated malaria during childhood results in progressive loss and dysfunction of pro-inflammatory, malaria-responsive γδ T cells and that this may have a role in facilitating anti-disease immunity in children.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jagannathan, P. et al. Vδ2+ T cell response to malaria correlates with protection from infection but is attenuated with repeated exposure. Sci. Rep. 7, 11487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Costa, G. et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood 118, 6952–6962 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Junqueira, C. et al. γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Nat. Immunol. 22, 347–357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ishizuka, A. S. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat. Med. 22, 614–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaidi, I. et al. γδ T cells are required for the induction of sterile immunity during irradiated sporozoite vaccinations. J. Immunol. 199, 3781–3788 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Lautenbach, M. J. et al. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep. 39, 110709 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Schofield, L. et al. Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδ T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Med. 15, 114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farrington, L. A. et al. Frequent malaria drives progressive Vδ2 T-cell loss, dysfunction, and CD16 up-regulation during early childhood. J. Infect. Dis. 213, 1483–1490 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Farrington, L. A. et al. Opsonized antigen activates Vδ2+ T cells via CD16/FCγRIIIa in individuals with chronic malaria exposure. PLoS Pathog. 16, e1008997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Borstel, Avon et al. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci. Transl Med. 13, eabe7430 (2021).

    Article  Google Scholar 

  70. Hviid, L. et al. Perturbation and proinflammatory type activation of Vδ1+ γδ T cells in African children with Plasmodium falciparum malaria. Infect. Immun. 69, 3190–3196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hviid, L. et al. High frequency of circulating γδ T cells with dominance of the Vδ1 subset in a healthy population. Int. Immunol. 12, 797–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Goodier, M. R., Wolf, A. S. & Riley, E. M. Differentiation and adaptation of natural killer cells for anti‐malarial immunity. Immunol. Rev. 293, 25–37 (2019).

    Article  PubMed  Google Scholar 

  73. Artavanis-Tsakonas, K. & Riley, E. M. Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes. J. Immunol. 169, 2956–2963 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Horowitz, A. et al. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. J. Immunol. 184, 6043–6052 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Horowitz, A. et al. Antigen-specific IL-2 secretion correlates with NK cell responses after immunization of Tanzanian children with the RTS,S/AS01 malaria vaccine. J. Immunol. 188, 5054–5062 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Kazmin, D. et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc. Natl Acad. Sci. USA 114, 2425–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arora, G. et al. NK cells inhibit Plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity. eLife 7, e36806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Odera, D. O. et al. Anti-merozoite antibodies induce natural killer cell effector function and are associated with immunity against malaria. Sci. Transl Med. 15, eabn5993 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Moebius, J. et al. PD-1 expression on NK cells in malaria-exposed individuals is associated with diminished natural cytotoxicity and enhanced antibody-dependent cellular cytotoxicity. Infect. Immun. 88, e00711–e00719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hart, G. T. et al. Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria. J. Exp. Med. 216, 1280–1290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ty, M. et al. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci. Transl Med. 15, eadd9012 (2023). This longitudinal study profiles NK cells in cohorts of Ugandan children and identifies an atypical CD56 subset that expands in response to repeated P. falciparum stimulation and correlates with protection against symptomatic malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mavilio, D. et al. Characterization of CD56/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl Acad. Sci. USA 102, 2886–2891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez, V. D. et al. Expansion of functionally skewed CD56-negative NK cells in chronic hepatitis C virus infection: correlation with outcome of pegylated IFN-α and ribavirin treatment. J. Immunol. 183, 6612–6618 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Forconi, C. S. et al. Poorly cytotoxic terminally differentiated CD56negCD16pos NK cells accumulate in Kenyan children with Burkitt lymphomas. Blood Adv. 2, 1101–1114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Björkström, N. K., Ljunggren, H.-G. & Sandberg, J. K. CD56 negative NK cells: origin, function, and role in chronic viral disease. Trends Immunol. 31, 401–406 (2010).

    Article  PubMed  Google Scholar 

  86. Osier, F. H. et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med. 12, 108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Musasia, F. K. et al. Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nat. Commun. 13, 4098 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nziza, N. et al. Accumulation of neutrophil phagocytic antibody features tracks with naturally acquired immunity against malaria in children. J. Infect. Dis. 228, 759–768 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Engwerda, C. R., Ng, S. S. & Bunn, P. T. The regulation of CD4+ T cell responses during protozoan infections. Front. Immunol. 5, 498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Montes de Oca, M. et al. Type I interferons regulate immune responses in humans with blood-stage Plasmodium falciparum infection. Cell Rep. 17, 399–412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roestenberg, M. et al. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361, 468–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Mordmüller, B. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542, 445–449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Jong, S. E. et al. Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nat. Immunol. 22, 654–665 (2021).

    Article  PubMed  Google Scholar 

  94. Boyle, M. J. et al. Effector phenotype of Plasmodium falciparum-specific CD4+ T cells is influenced by both age and transmission intensity in naturally exposed populations. J. Infect. Dis. 212, 416–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boyle, M. J. et al. The development of Plasmodium falciparum-specific IL10 CD4 T cells and protection from malaria in children in an area of high malaria transmission. Front. Immunol. 8, 1329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Odorizzi, P. M. et al. In utero priming of highly functional effector T cell responses to human malaria. Sci. Transl Med. 10, eaat6176 (2018). This study profiles cord blood from Ugandan infants and finds that placental malaria is associated with generation of pro-inflammatory malaria-responsive fetal T cells.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gitau, E. N. et al. CD4+ T cell responses to the Plasmodium falciparum erythrocyte membrane protein 1 in children with mild malaria. J. Immunol. 192, 1753–1761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghazanfari, N., Mueller, S. N. & Heath, W. R. Cerebral malaria in mouse and man. Front. Immunol. 9, 2016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Minigo, G. et al. Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathog. 5, e1000402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kurup, S. P. et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nat. Med. 23, 1220–1225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Todryk, S. M. et al. Correlation of memory T cell responses against TRAP with protection from clinical malaria, and CD4+CD25high T cells with susceptibility in Kenyans. PLoS ONE 3, e2027 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Walther, M. et al. Upregulation of TGF-β, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23, 287–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Torcia, M. G. et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc. Natl Acad. Sci. USA 105, 646–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boyle, M. J. et al. Decline of FoxP3+ regulatory CD4 T cells in peripheral blood of children heavily exposed to malaria. PLoS Pathog. 11, e1005041 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jagannathan, P. et al. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog. 10, e1003864 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Walther, M. et al. Distinct roles for FOXP3+ and FOXP3 CD4+ T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog. 5, e1000364 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brustoski, K. et al. IFN-gamma and IL-10 mediate parasite-specific immune responses of cord blood cells induced by pregnancy-associated Plasmodium falciparum malaria. J. Immunol. 174, 1738–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Edwards, C. L. et al. IL-10-producing Th1 cells possess a distinct molecular signature in malaria. J. Clin. Invest. 133, e153733 (2023). This study describes the heterogeneity of co-inhibitory receptor expression by Treg cells during P. falciparum infection, highlighting the difficulty in targeting these regulatory pathways for favourable clinical outcomes in malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sumida, T. S. et al. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat. Immunol. 23, 632–642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y. et al. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J. Clin. Invest. 133, e169417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chughlay, M. F. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of coadministered ruxolitinib and artemether–lumefantrine in healthy adults. Antimicrob. Agents Chemother. 66, e0158421 (2021).

    PubMed  Google Scholar 

  113. Junqueira, C. et al. Cytotoxic CD8+ T cells recognize and kill Plasmodium vivax-infected reticulocytes. Nat. Med. 24, 1330–1336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bijker, E. M. et al. Cytotoxic markers associate with protection against malaria in human volunteers immunized with plasmodium falciparum sporozoites. J. Infect. Dis. 210, 1605–1615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hodgson, S. H. et al. Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals. J. Infect. Dis. 211, 1076–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Lefebvre, M. N. & Harty, J. T. You shall not pass: memory CD8 T cells in liver-stage malaria. Trends Parasitol. 36, 147–157 (2020).

    Article  PubMed  Google Scholar 

  117. Noé, A. et al. Deep immune phenotyping and single-cell transcriptomics allow identification of circulating TRM-like cells which correlate with liver-stage immunity and vaccine-induced protection from malaria. Front. Immunol. 13, 795463 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Howland, S. W., Claser, C., Poh, C. M., Gun, S. Y. & Rénia, L. Pathogenic CD8+ T cells in experimental cerebral malaria. Semin. Immunopathol. 37, 221–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Riggle, B. A. et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria. J. Clin. Invest. 130, 1128–1138 (2019).

    Article  Google Scholar 

  120. Barrera, V. et al. Comparison of CD8+ T cell accumulation in the brain during human and murine cerebral malaria. Front. Immunol. 10, 1747 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaminski, L.-C. et al. Cytotoxic T cell-derived granzyme B is increased in severe plasmodium falciparum malaria. Front. Immunol. 10, 2917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Noble, A., Giorgini, A. & Leggat, J. A. Cytokine-induced IL-10–secreting CD8 T cells represent a phenotypically distinct suppressor T-cell lineage. Blood 107, 4475–4483 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Cohen, S., McGregor, I. A. & Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961). This pivotal study shows the crucial role of anti-parasite antibody in controlling parasitaemia and clinical symptoms in malaria.

    Article  CAS  PubMed  Google Scholar 

  124. Kurtovic, L. et al. Multi-functional antibodies are induced by the RTS,S malaria vaccine and associated with protection in a phase I/IIa trial. J. Infect. Dis. 365, 1863 (2020).

    Google Scholar 

  125. White, M. T. et al. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect. Dis. 15, 1450–1458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. RTS,S Clinical Trials Partnership. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 11, e1001685 (2014).

    Article  Google Scholar 

  127. Opi, D. H. et al. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev. Vaccines 20, 1257–1272 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Tan, J. et al. Functional human IgA targets a conserved site on malaria sporozoites. Sci. Transl Med. 13, eabg2344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boyle, M. J. et al. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42, 580–590 (2015). This study shows that antibodies that target merozoite-stage parasites require complement to inhibit parasite growth and that complement-fixing antibodies are strongly associated with protection from malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boyle, M. J. et al. IgM in human immunity to Plasmodium falciparum malaria. Sci. Adv. 5, eaax4489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Behet, M. C. et al. The complement system contributes to functional antibody-mediated responses induced by immunization with Plasmodium falciparum malaria sporozoites. Infect. Immun. 86, e00920-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kurtovic, L. et al. Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children. BMC Med. 16, 61 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Opi, D. H. et al. Reduced risk of placental parasitemia associated with complement fixation on Plasmodium falciparum by antibodies among pregnant women. BMC Med. 19, 201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reiling, L. et al. Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat. Commun. 10, 610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Joos, C. et al. Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS ONE 5, e9871 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Garcia-Senosiain, A. et al. Neutrophils dominate in opsonic phagocytosis of P. falciparum blood-stage merozoites and protect against febrile malaria. Commun. Biol. 4, 984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hill, D. L. et al. Merozoite antigens of Plasmodium falciparum elicit strain-transcending opsonizing immunity. Infect. Immun. 84, 2175–2184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Larsen, M. D. et al. Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat. Commun. 12, 5838 (2021). This paper shows that afucosylated IgG targeting the pregnancy-associated red blood cell surface antigen PfEMP1 induces Fc-dependent NK cell degranulation and that these afucosylated antibodies develop during natural infection but not vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tarlinton, D. M., Ding, Z., Tellier, J. & Nutt, S. L. Making sense of plasma cell heterogeneity. Curr. Opin. Immunol. 81, 102297 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. White, M. T. et al. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J. Infect. Dis. 210, 1115–1122 (2014). This study models the kinetics of SLPC and LLPC induction and maintenance following malaria infection.

    Article  CAS  PubMed  Google Scholar 

  141. Vijay, R. et al. Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat. Immunol. 21, 790–801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fowkes, F. J. I., McGready, R., Johnstone-Robertson, S., Nosten, F. & Beeson, J. G. Antibody boosting and longevity following tetanus immunization during pregnancy. Clin. Infect. Dis. 56, 749–750 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Fowkes, F. J. I. et al. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J. Infect. Dis. 206, 1612–1621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baird, J. K. et al. Age-dependent acquired protection against Plasmodium falciparum in people having two years exposure to hyperendemic malaria. Am. J. Med. Trop. Hyg. 45, 65–76 (1991). This study identifies the key role of host age in acquisition of protective immunity to P. falciparum malaria.

    Article  CAS  Google Scholar 

  145. Baird, J. K. Age dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann. Trop. Med. Parasitol. 92, 367–390 (2017).

    Article  Google Scholar 

  146. Oyong, D. A. et al. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine 75, 103784 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez-Barraquer, I. et al. Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. eLife 7, e35832 (2018). This study uses detailed clinical and entomological data to quantify the development of anti-disease and anti-parasite immunity, showing independent effects of age and parasite exposure.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ssewanyana, I. et al. Impact of a rapid decline in malaria transmission on antimalarial IgG subclasses and avidity. Front. Immunol. 11, 576663 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chan, J.-A. et al. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat. Commun. 13, 4159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ssewanyana, I. et al. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda. Malar. J. 16, 67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Urban, B. C. et al. Fatal Plasmodium falciparum malaria causes specific patterns of splenic architectural disorganization. Infect. Immun. 73, 1986–1994 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dechkhajorn, W. et al. The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci. Rep. 10, 3865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kho, S. et al. Hidden biomass of intact malaria parasites in the human spleen. N. Engl. J. Med. 384, 2067–2069 (2021). This study identifies a hidden biomass of P. falciparum and P. vivax in the spleens of asymptomatic adults from a malaria-endemic area of Papua, Indonesia.

    Article  PubMed  Google Scholar 

  154. Kho, S. et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. PLoS Med. 18, e1003632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl Med. 6, 244re5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Aguilar, R. et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 123, 959–966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Obaldia, N. et al. Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio 9, e00625-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ndungu, F. M. et al. Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc. Natl Acad. Sci. USA 109, 8247–8252 (2012). This study shows that memory B cells survive longer than anti-parasite antibodies in serum, indicating that they are better maintained than LLPCs in children previously exposed to P. falciparum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Weiss, G. E. et al. The Plasmodium falciparum-specific human memory B cell compartment expands gradually with repeated malaria infections. PLoS Pathog. 6, e1000912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Weiss, G. E. et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183, 2176–2182 (2009). This study is the first to show that P. falciparum malaria drives expansion of ‘atypical’ memory B cells, previously identified as a hyporesponsive B cell subset in HIV-infected individuals.

    Article  CAS  PubMed  Google Scholar 

  162. Portugal, S. et al. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. eLife 4, 1748 (2015).

    Article  Google Scholar 

  163. Sullivan, R. T. et al. FCRL5 delineates functionally impaired memory B cells associated with Plasmodium falciparum exposure. PLoS Pathog. 11, e1004894 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sundling, C. et al. B cell profiling in malaria reveals expansion and remodelling of CD11c+ B cell subsets. JCI Insight 5, e126492 (2019).

    Article  PubMed  Google Scholar 

  165. Illingworth, J. et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol. 190, 1038–1047 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Holla, P. et al. Shared transcriptional profiles of atypical B cells suggest common drivers of expansion and function in malaria, HIV, and autoimmunity. Sci. Adv. 7, eabg8384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sutton, H. J. et al. Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep. 34, 108684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Muellenbeck, M. F. et al. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies B cell memory to Plasmodium falciparum. J. Exp. Med. 210, 389–399 (2013). This paper shows that both classical and ‘atypical’ memory B cells contribute to protective circulating antibodies in malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hopp, C. S. et al. Atypical B cells up-regulate costimulatory molecules during malaria and secrete antibodies with T follicular helper cell support. Sci. Immunol. 7, eabn1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Obeng-Adjei, N. et al. Malaria-induced interferon-γ drives the expansion of Tbethi atypical memory B cells. PLoS Pathog. 13, e1006576 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hopp, C. S. et al. Plasmodium falciparum-specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. J. Exp. Med. 218, e20200901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Thouvenel, C. D. et al. Multimeric antibodies from antigen-specific human IgM+ memory B cells restrict Plasmodium parasites. J. Exp. Med. 218, e20200942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Krishnamurty, A. T. et al. Somatically hypermutated Plasmodium-specific IgM+ memory B cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 45, 402–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Han, X. et al. Potential role for regulatory B cells as a major source of interleukin-10 in spleen from Plasmodium chabaudi-infected mice. Infect. Immun. 86, e00016-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Soon, M. S. F., Nalubega, M. & Boyle, M. J. T-follicular helper cells in malaria infection and roles in antibody induction. Oxf. Open Immunol. 2, iqab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sebina, I. et al. IFNAR1-signalling obstructs ICOS-mediated humoral immunity during non-lethal blood-stage Plasmodium infection. PLoS Pathog. 12, e1005999 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zander, R. A. et al. Type I interferons induce T regulatory 1 responses and restrict humoral immunity during experimental malaria. PLoS Pathog. 12, e1005945 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Olatunde, A. C., Hale, J. S. & Lamb, T. J. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol. 42, 536–550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chan, J.-A. et al. Th2-like T follicular helper cells promote functional antibody production during Plasmodium falciparum infection. Cell Rep. Med. 1, 100157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bowyer, G. et al. CXCR3+ T follicular helper cells induced by co-administration of RTS,S/AS01B and viral-vectored vaccines are associated with reduced immunogenicity and efficacy against malaria. Front. Immunol. 9, 1660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Minassian, A. M. et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med 2, 701–719.e19 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Wahl, I. et al. Clonal evolution and TCR specificity of the human TFH cell response to Plasmodium falciparum CSP. Sci. Immunol. 7, eabm9644 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Obeng-Adjei, N. et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell Rep. 13, 425–439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Solé, P. et al. A T follicular helper cell origin for T regulatory type 1 cells. Cell. Mol. Immunol. 20, 489–511 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xin, G. et al. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat. Commun. 9, 5037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wing, J. B., Lim, E. L. & Sakaguchi, S. Control of foreign Ag‐specific Ab responses by Treg and Tfr. Immunol. Rev. 296, 104–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Datoo, M. S. et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 403, 533–544 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT04978272 (2024).

  190. Chandramohan, D. et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N. Engl. J. Med. 385, 1005–1017 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Kapulu, M. C. et al. Safety and PCR monitoring in 161 semi-immune Kenyan adults following controlled human malaria infection. Jci Insight 6, e146443 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Dejon-Agobe, J. C. et al. Controlled human malaria infection of healthy adults with lifelong malaria exposure to assess safety, immunogenicity, and efficacy of the asexual blood stage malaria vaccine candidate GMZ2. Clin. Infect. Dis. 69, 1377–1384 (2018).

    Article  PubMed Central  Google Scholar 

  193. Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. van Dorst, M. M. A. R. et al. Immunological factors linked to geographical variation in vaccine responses. Nat. Rev. Immunol. 24, 250–263 (2024).

    Article  PubMed  Google Scholar 

  195. Australia New Zealand Trials Registry. ANZCTR.org.au https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12621000866808 (2022).

  196. Pallikkuth, S. et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. eLife 9, e51889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nielsen, C. M. et al. Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight 8, e163859 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Cowman, A. F., Tonkin, C. J., Tham, W.-H. & Duraisingh, M. T. The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe 22, 232–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Ngotho, P. et al. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol. Rev. 43, 401–414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rausher, M. D. Co-evolution and plant resistance to natural enemies. Nature 411, 857–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Ayres, J. S., Freitag, N. & Schneider, D. S. Identification of Drosophila mutants altering defense of and endurance to Listeria monocytogenes infection. Genetics 178, 1807–1815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Råberg, L., Sim, D. & Read, A. F. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318, 812–814 (2007).

    Article  PubMed  Google Scholar 

  204. Soares, M. P., Teixeira, L. & Moita, L. F. Disease tolerance and immunity in host protection against infection. Nat. Rev. Immunol. 17, 83–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ferreira, A. et al. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell 145, 398–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Nahrendorf, W., Ivens, A. & Spence, P. J. Inducible mechanisms of disease tolerance provide an alternative strategy of acquired immunity to malaria. eLife 10, e63838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sandoval, D. M. et al. Adaptive T cells regulate disease tolerance in human malaria. Preprint at medRxiv https://doi.org/10.1101/2021.08.19.21262298 (2021).

  210. Chiu, L. et al. Protective microbiota: from localized to long-reaching co-immunity. Front. Immunol. 8, 1678 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tan, J. et al. Chapter three the role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Mandal, R. K. & Schmidt, N. W. Mechanistic insights into the interaction between the host gut microbiome and malaria. PLOS Pathog. 19, e1011665 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Koyama, M. et al. Intestinal microbiota controls graft-versus-host disease independent of donor-host genetic disparity. Immunity 56, 1876–1893.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Juraska, M. et al. Genotypic analysis of RTS,S/AS01E malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5–17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00179-8 (2024).

  215. Bell, G. J. et al. Background malaria incidence and parasitemia during the three-dose RTS,S/AS01 vaccination series do not reduce magnitude of antibody response nor efficacy against the first case of malaria. BMC Infect. Dis. 23, 716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Morter, R. et al. Impact of exposure to malaria and nutritional status on responses to the experimental malaria vaccine ChAd63 MVA ME-TRAP in 5-17 month-old children in Burkina Faso. Front. Immunol. 13, 1058227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tiono, A. B. et al. Plasmodium falciparum infection coinciding with the malaria vaccine candidate BK-SE36 administration interferes with the immune responses in Burkinabe children. Front. Immunol. 14, 1119820 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mahon, B. E. et al. Baseline asymptomatic malaria infection and immunogenicity of recombinant vesicular stomatitis virus–Zaire Ebola virus envelope glycoprotein. J. Infect. Dis. 224, 1907–1915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Snounou, G. & Pérignon, J.-L. Chapter six malariotherapy – insanity at the service of malariology. Adv. Parasitol. 81, 223–255 (2013).

    Article  PubMed  Google Scholar 

  220. Salkeld, J. et al. Repeat controlled human malaria infection of healthy UK adults with blood-stage Plasmodium falciparum: safety and parasite growth dynamics. Front. Immunol. 13, 984323 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572–578 (1960).

    Google Scholar 

  222. Camponovo, F. et al. Proteome-wide analysis of a malaria vaccine study reveals personalized humoral immune profiles in Tanzanian adults. eLife 9, e53080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Taylor, R. R. et al. Selective recognition of malaria antigens by human serum antibodies is not genetically determined but demonstrates some features of clonal imprinting. Int. Immunol. 8, 905–915 (1996).

    Article  CAS  PubMed  Google Scholar 

  224. McNamara, H. A. et al. Antibody feedback limits the expansion of B cell responses to malaria vaccination but drives diversification of the humoral response. Cell Host Microbe 28, 572–585.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Beutler, N. et al. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog. 18, e1010409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Dobaño, C. et al. Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy. Nat. Commun. 10, 2174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Chaudhury, S. et al. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine 39, 968–975 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Suscovich, T. J. et al. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci. Transl Med. 12, eabb4757 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Sallusto, F., Cassotta, A., Hoces, D., Foglierini, M. & Lanzavecchia, A. Do memory CD4 T cells keep their cell-type programming: plasticity versus fate commitment?: T-cell heterogeneity, plasticity, and selection in humans. Cold Spring Harbor Perspect. Biol. 10, a029421 (2017).

    Article  Google Scholar 

  230. Carpio, V. H. et al. T helper plasticity is orchestrated by STAT3, Bcl6 and Blimp-1 balancing pathology and protection in malaria. iScience 23, 101310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Soon, M. S. F. et al. Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nat. Immunol. 21, 1597–1610 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J.B. is supported by a Snow Medical Fellowship and CSL Centenary Fellowship. P.J. is supported by the NIH (U01 AI15532, U01 AI150741, R01 AI 177377), the Bill and Melinda Gates Foundation (OPP 052649) and the Stanford Maternal and Child Health Faculty Scholars Program. C.R.E. has been supported by funding from the Australian National Health and Medical Research Council (1132975, 1154265).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Michelle J. Boyle, Christian R. Engwerda or Prasanna Jagannathan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Phil Spence; Tuan Tran, who co-reviewed with Prasida Holla; Francis Ndungu; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ANZCRT.org.au: https://anzctr.org.au/Default.aspx

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, M.J., Engwerda, C.R. & Jagannathan, P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 24, 637–653 (2024). https://doi.org/10.1038/s41577-024-01041-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01041-5

  • Springer Nature Limited

Navigation