The full spectrum of human naive T cells

  • Theo van den Broek
  • José A. M. Borghans
  • Femke van Wijk
Review Article


Naive T cells have long been regarded as a developmentally synchronized and fairly homogeneous and quiescent cell population, the size of which depends on age, thymic output and prior infections. However, there is increasing evidence that naive T cells are heterogeneous in phenotype, function, dynamics and differentiation status. Current strategies to identify naive T cells should be adjusted to take this heterogeneity into account. Here, we provide an integrated, revised view of the naive T cell compartment and discuss its implications for healthy ageing, neonatal immunity and T cell reconstitution following haematopoietic stem cell transplantation.

Evidence is increasing that naive T cells are heterogeneous in phenotype, function, dynamics and differentiation status. Here, van den Broek et al. provide a revised view of the naive T cell compartment and then discuss the implications for ageing, neonatal immunity and T cell reconstitution following haematopoietic stem cell transplantation.



The authors apologize to those colleagues whose relevant work was not included in this Review owing to space constraints. The authors thank R. de Boer, M. Hazenberg and L. Meyaard for critically reading the manuscript and for helpful comments and A. Boltjes for support with the figures.

Reviewer information

Nature Reviews Immunology thanks R. Kedl and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author contributions

T.v.d.B., J.A.M.B. and F.v.W. wrote the manuscript and contributed to reviewing the literature and the review and editing of this article.

Competing interests

The authors declare no competing interests.




The condition of having an abnormally low level of lymphocytes in the circulation.

Haematopoietic stem cell transplantation

(HSCT). Treatment of recipients with irradiation and/or chemotherapy followed by the infusion of cells containing haematopoietic stem and progenitor cells with or without immune cells derived from individuals of the same species.

Homeostatic proliferation

This term can refer to two different phenomena: the steady-state maintenance of T cells through self-renewal (minimal division) and the process by which T cells in lymphopenic conditions rapidly proliferate to reconstitute the T cell pool, also called lymphopenia-induced proliferation.

Virtual memory T cells

Antigen-inexperienced memory-phenotype T cells, which may be induced by T cell receptor cross reactivity, low-affinity peptide and/or MHC ligands and certain cytokines.

Mature naive T cells

Naive T cells that have matured in secondary lymphoid organs following thymic egress and are no longer recent thymic emigrants.

T cell receptor excision circles

(TRECs). Small, stable circles of DNA excised during T cell receptor gene rearrangement in the thymus.

Simpson’s diversity index

A measure of diversity that takes into account the number of clones present, as well as the relative abundance of each clone.

Repertoire skewedness

The extent to which a repertoire deviates from a situation where all clones occur equally frequently.

Thymic output

The amount of T cells that successfully exit the thymus into the periphery after intrathymic selection.

Graft-versus-host disease

(GVHD). An inflammatory complication following the transplantation of stem cells or organs to a genetically different person caused by donor immune cells that recognize the recipient’s cells and tissues as foreign.


  1. 1.
    den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012). This study demonstrates that naive T cell maintenance occurs fundamentally differently in mice and humans. CrossRefGoogle Scholar
  2. 2.
    Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    Gibbons, D. et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat. Med. 20, 1206–1210 (2014). This study demonstrates that T cells from newborn babies can respond to activation by expressing high levels of IL-8. PubMedCrossRefGoogle Scholar
  4. 4.
    Takada, K. & Jameson, S. C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).PubMedCrossRefGoogle Scholar
  5. 5.
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    White, J. T., Cross, E. W. & Kedl, R. M. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat. Rev. Immunol. 17, 391–400 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fink, P. J. The biology of recent thymic emigrants. Annu. Rev. Immunol. 31, 31–50 (2013).PubMedCrossRefGoogle Scholar
  8. 8.
    Haines, C. J. et al. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J. Exp. Med. 206, 275–285 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kohler, S. et al. Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur. J. Immunol. 35, 1987–1994 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    Kwan, A. et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 312, 729–738 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Muraro, P. A. et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816 (2005).PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    van der Spek, J., Groenwold, R. H., van der Burg, M. & van Montfrans, J. M. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J. Clin. Immunol. 35, 416–430 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ye, P. & Kirschner, D. E. Measuring emigration of human thymocytes by T-cell receptor excision circles. Crit. Rev. Immunol. 22, 483–497 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nat. Med. 6, 1036–1042 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    Hazenberg, M. D., Verschuren, M. C., Hamann, D., Miedema, F. & van Dongen, J. J. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J. Mol. Med. 79, 631–640 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    Kilpatrick, R. D. et al. Homeostasis of the naive CD4+ T cell compartment during aging. J. Immunol. 180, 1499–1507 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195, 789–794 (2002).PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kohler, S. & Thiel, A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 113, 769–774 (2009).PubMedCrossRefGoogle Scholar
  20. 20.
    Bains, I., Yates, A. J. & Callard, R. E. Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. PLoS ONE 8, e49554 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    van den Broek, T. et al. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J. Clin. Invest. 126, 1126–1136 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fornasa, G. et al. TCR stimulation drives cleavage and shedding of the ITIM receptor CD31. J. Immunol. 184, 5485–5492 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vrisekoop, N. T-cell dynamics in healthy and HIV-infected individuals Ch. 7 Thesis, Utrecht Univ. (2007).Google Scholar
  24. 24.
    McFarland, R. D., Douek, D. C., Koup, R. A. & Picker, L. J. Identification of a human recent thymic emigrant phenotype. Proc. Natl Acad. Sci. USA 97, 4215–4220 (2000).PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Das, A. et al. Adaptive from innate: human IFN-gamma+CD4+ T cells can arise directly from CXCL8-producing recent thymic emigrants in babies and adults. J. Immunol. 199, 1696–1705 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pekalski, M. L. et al. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight 2, e93739 (2017).PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Friesen, T. J., Ji, Q. & Fink, P. J. Recent thymic emigrants are tolerized in the absence of inflammation. J. Exp. Med. 213, 913–920 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    van der Geest, K. S. et al. Low-affinity TCR engagement drives IL-2-dependent post-thymic maintenance of naive CD4+ T cells in aged humans. Aging Cell 14, 744–753 (2015). This study demonstrates further naive T cell heterogeneity by the expression of CD25. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pekalski, M. L. et al. Postthymic expansion in human CD4 naive T cells defined by expression of functional high-affinity IL-2 receptors. J. Immunol. 190, 2554–2566 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Berkley, A. M., Hendricks, D. W., Simmons, K. B. & Fink, P. J. Recent thymic emigrants and mature naive T cells exhibit differential DNA methylation at key cytokine loci. J. Immunol. 190, 6180–6186 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cunningham, C. A., Bergsbaken, T. & Fink, P. J. Cutting edge: defective aerobic glycolysis defines the distinct effector function in antigen-activated CD8+ recent thymic emigrants. J. Immunol. 198, 4575–4580 (2017).PubMedCrossRefGoogle Scholar
  32. 32.
    LaMere, S. A. et al. H3K27 methylation dynamics during CD4 T cell activation: regulation of JAK/STAT and IL12RB2 expression by JMJD3. J. Immunol. 199, 3158–3175 (2017).PubMedCrossRefGoogle Scholar
  33. 33.
    Durek, P. et al. Epigenomic profiling of human CD4+ T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity 45, 1148–1161 (2016).PubMedCrossRefGoogle Scholar
  34. 34.
    Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017).Google Scholar
  35. 35.
    Altorok, N. et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjogren’s syndrome. Arthritis Rheumatol. 66, 731–739 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Coit, P. et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arthritis Rheumatol. 68, 2200–2209 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Heninger, A. K. et al. A divergent population of autoantigen-responsive CD4+ T cells in infants prior to beta cell autoimmunity. Sci. Transl Med. 9, eaaf8848 (2017).PubMedCrossRefGoogle Scholar
  38. 38.
    Houston, E. G. Jr, Higdon, L. E. & Fink, P. J. Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool. Proc. Natl Acad. Sci. USA 108, 5366–5371 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Berzins, S. P., Boyd, R. L. & Miller, J. F. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848 (1998).PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Berzins, S. P., Godfrey, D. I., Miller, J. F. & Boyd, R. L. A central role for thymic emigrants in peripheral T cell homeostasis. Proc. Natl Acad. Sci. USA 96, 9787–9791 (1999).PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    van Hoeven, V. et al. Dynamics of recent thymic emigrants in young adult mice. Front. Immunol. 8, 933 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dong, J. et al. Homeostatic properties and phenotypic maturation of murine CD4+ pre-thymic emigrants in the thymus. PLoS ONE 8, e56378 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Houston, E. G. Jr & Fink, P. J. MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants. J. Immunol. 183, 7244–7249 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hogan, T., Gossel, G., Yates, A. J. & Seddon, B. Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc. Natl Acad. Sci. USA 112, E6917–E6926 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Di Rosa, F. & Pabst, R. The bone marrow: a nest for migratory memory T cells. Trends Immunol. 26, 360–366 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).This study reveals early-life T cell distribution and function in different tissue compartments. PubMedCrossRefGoogle Scholar
  47. 47.
    Lewis, M., Tarlton, J. F. & Cose, S. Memory versus naive T-cell migration. Immunol. Cell Biol. 86, 226–231 (2008).PubMedCrossRefGoogle Scholar
  48. 48.
    Thome, J. J. et al. Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1, eaah6506 (2016). This study reveals long-term maintenance of human naive T cells in lymphoid tissues with site-specific clonal expansions of naive T cells. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wong, M. T. et al. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45, 442–456 (2016).PubMedCrossRefGoogle Scholar
  50. 50.
    Centers for Disease Control and Prevention. Estimates of deaths associated with seasonal influenza—United States, 1976–2007. MMWR Morb. Mortal. Wkly Rep. 59, 1057–1062 (2010).Google Scholar
  51. 51.
    Gardner, P. & Pabbatireddy, S. Vaccines for women age 50 and older. Emerg. Infect. Dis. 10, 1990–1995 (2004).PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Steinmann, G. G., Klaus, B. & Muller-Hermelink, H. K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand. J. Immunol. 22, 563–575 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    Westera, L. et al. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell 14, 219–227 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tsukamoto, H., Huston, G. E., Dibble, J., Duso, D. K. & Swain, S. L. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J. Immunol. 185, 4535–4544 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sauce, D. et al. Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J. Immunol. 189, 5541–5548 (2012).PubMedCrossRefGoogle Scholar
  56. 56.
    Cicin-Sain, L. et al. Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc. Natl Acad. Sci. USA 104, 19960–19965 (2007).PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gardner, I. D. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810 (1980).PubMedCrossRefGoogle Scholar
  58. 58.
    Miller, R. A. The aging immune system: primer and prospectus. Science 273, 70–74 (1996).PubMedCrossRefGoogle Scholar
  59. 59.
    Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17, 480–485 (2005).PubMedCrossRefGoogle Scholar
  60. 60.
    Haynes, L., Eaton, S. M., Burns, E. M., Randall, T. D. & Swain, S. L. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc. Natl Acad. Sci. USA 100, 15053–15058 (2003).PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).PubMedCrossRefGoogle Scholar
  62. 62.
    Britanova, O. V. et al. Dynamics of individual T cell repertoires: from cord blood to centenarians. J. Immunol. 196, 5005–5013 (2016).PubMedCrossRefGoogle Scholar
  63. 63.
    Shifrut, E. et al. CD4(+) T cell-receptor repertoire diversity is compromised in the spleen but not in the bone marrow of aged mice due to private and sporadic clonal expansions. Front. Immunol. 4, 379 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gibson, K. L. et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8, 18–25 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014). This study demonstrates that the TCR repertoire of naive T cells only modestly decreases during healthy ageing. PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ferrando-Martinez, S. et al. Age-related deregulation of naive T cell homeostasis in elderly humans. Age 33, 197–207 (2011).PubMedCrossRefGoogle Scholar
  67. 67.
    Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Adkins, B., Leclerc, C. & Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004).PubMedCrossRefGoogle Scholar
  69. 69.
    Galindo-Albarran, A. O. et al. CD8+ T cells from human neonates are biased toward an innate immune response. Cell Rep. 17, 2151–2160 (2016). This study demonstrates that neonatal CD8 T cells have a distinct epigenetic landscape that is biased towards an innate immune response. PubMedCrossRefGoogle Scholar
  70. 70.
    Crespo, M. et al. Neonatal T-cell maturation and homing receptor responses to Toll-like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatr. Res. 71, 136–143 (2012).PubMedCrossRefGoogle Scholar
  71. 71.
    Alexander-Miller, M. A. Vaccines against respiratory viral pathogens for use in neonates: opportunities and challenges. J. Immunol. 193, 5363–5369 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dowling, D. J. et al. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2, e91020 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Heining, C. et al. Lymphocyte reconstitution following allogeneic hematopoietic stem cell transplantation: a retrospective study including 148 patients. Bone Marrow Transplant. 39, 613–622 (2007).PubMedCrossRefGoogle Scholar
  74. 74.
    Ringhoffer, S., Rojewski, M., Dohner, H., Bunjes, D. & Ringhoffer, M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/betaTREC ratio and thymic naive T cells. Haematologica 98, 1600–1608 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Alho, A. C. et al. Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD. Blood 127, 646–657 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cieri, N. et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 125, 2865–2874 (2015).PubMedCrossRefGoogle Scholar
  77. 77.
    Roberto, A. et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 125, 2855–2864 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Thiel, A. et al. Direct assessment of thymic reactivation after autologous stem cell transplantation. Acta Haematol. 119, 22–27 (2008).PubMedCrossRefGoogle Scholar
  79. 79.
    Azevedo, R. I. et al. Long-term immune reconstitution of naive and memory T cell pools after haploidentical hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 19, 703–712 (2013).PubMedCrossRefGoogle Scholar
  80. 80.
    Douek, D. C. et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 355, 1875–1881 (2000).PubMedCrossRefGoogle Scholar
  81. 81.
    Hazenberg, M. D. et al. T-Cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 99, 3449–3453 (2002).PubMedCrossRefGoogle Scholar
  82. 82.
    Kanakry, C. G. et al. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight 1, e86252 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bleakley, M. et al. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood 115, 4923–4933 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Distler, E. et al. Alloreactive and leukemia-reactive T cells are preferentially derived from naive precursors in healthy donors: implications for immunotherapy with memory T cells. Haematologica 96, 1024–1032 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Anderson, B. E. et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112, 101–108 (2003).PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bleakley, M. et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J. Clin. Invest. 125, 2677–2689 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Politikos, I. & Boussiotis, V. A. The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood 124, 3201–3211 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).PubMedCrossRefGoogle Scholar
  89. 89.
    Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).PubMedCrossRefGoogle Scholar
  90. 90.
    Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).PubMedCrossRefGoogle Scholar
  91. 91.
    Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Caramalho, I. et al. Human regulatory T-cell development is dictated by interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J. Autoimmun. 56, 98–110 (2015).PubMedCrossRefGoogle Scholar
  93. 93.
    Caramalho, I., Nunes-Cabaco, H., Foxall, R. B. & Sousa, A. E. Regulatory T-cell development in the human thymus. Front Immunol. 6, 395 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fuertes Marraco, S. A. et al. Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci. Transl Med. 7, 282ra48 (2015).PubMedCrossRefGoogle Scholar
  95. 95.
    Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).PubMedCrossRefGoogle Scholar
  96. 96.
    Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ahmed, R. et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep. 17, 2811–2818 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Miyama, T. et al. Highly functional T-cell receptor repertoires are abundant in stem memory T cells and highly shared among individuals. Sci. Rep. 7, 3663 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pulko, V. et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17, 966–975 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nasi, M. et al. Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 5, 167–175 (2006).PubMedCrossRefGoogle Scholar
  101. 101.
    Collier, F. M. et al. The ontogeny of naive and regulatory CD4(+) T-cell subsets during the first postnatal year: a cohort study. Clin. Transl Immunol. 4, e34 (2015).CrossRefGoogle Scholar
  102. 102.
    Utsuyama, M. et al. Differential age-change in the numbers of CD4+CD45RA+ and CD4+CD29+ T cell subsets in human peripheral blood. Mech. Ageing Dev 63, 57–68 (1992).PubMedCrossRefGoogle Scholar
  103. 103.
    Stulnig, T., Maczek, C., Bock, G., Majdic, O. & Wick, G. Reference intervals for human peripheral blood lymphocyte subpopulations from ‘healthy’ young and aged subjects. Int. Arch. Allergy Immunol. 108, 205–210 (1995).PubMedCrossRefGoogle Scholar
  104. 104.
    Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143–2155 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhang, L. et al. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J. Exp. Med. 190, 725–732 (1999).PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rickabaugh, T. M. et al. The dual impact of HIV-1 infection and aging on naive CD4 T-cells: additive and distinct patterns of impairment. PLOS One 6, e16459 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Junge, S. et al. Correlation between recent thymic emigrants and CD31+(PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur. J. Immunol. 37, 3270–3280 (2007).PubMedCrossRefGoogle Scholar
  108. 108.
    Koch, S. et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun. Ageing 5, 6 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Reen, D. J. Activation and functional capacity of human neonatal CD4 T-cells. Vaccine 16, 1401–1408 (1998).PubMedCrossRefGoogle Scholar
  110. 110.
    Ikewaki, N., Yamao, H., Kulski, J. K. & Inoko, H. Flow cytometric identification of CD93 expression on naive T lymphocytes (CD4(+)CD45RA (+) cells) in human neonatal umbilical cord blood. J. Clin. Immunol. 30, 723–733 (2010).PubMedCrossRefGoogle Scholar
  111. 111.
    Mackall, C. L. & Gress, R. E. Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol. Rev. 157, 61–72 (1997).PubMedCrossRefGoogle Scholar
  112. 112.
    Mackall, C. L. T-Cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells 18, 10–18 (2000).PubMedCrossRefGoogle Scholar
  113. 113.
    Akbar, A. N., Timms, A. & Janossy, G. Cellular events during memory T-cell activation in vitro: the UCHL1 (180,000 MW) determinant is newly synthesized after mitosis. Immunology 66, 213–218 (1989).PubMedPubMedCentralGoogle Scholar
  114. 114.
    Michie, C. A., McLean, A., Alcock, C. & Beverley, P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264–265 (1992).PubMedCrossRefGoogle Scholar
  115. 115.
    Picker, L. J. et al. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J. Immunol. 150, 1105–1121 (1993).PubMedGoogle Scholar
  116. 116.
    Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).PubMedCrossRefGoogle Scholar
  117. 117.
    Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371 (2008).PubMedCrossRefGoogle Scholar
  118. 118.
    Hengel, R. L. et al. Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen. J. Immunol. 170, 28–32 (2003).PubMedCrossRefGoogle Scholar
  119. 119.
    Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).PubMedCrossRefGoogle Scholar
  120. 120.
    Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Marelli-Berg, F. M., Clement, M., Mauro, C. & Caligiuri, G. An immunologist’s guide to CD31 function in T-cells. J. Cell Sci. 126, 2343–2352 (2013).PubMedCrossRefGoogle Scholar
  122. 122.
    Camerini, D., Walz, G., Loenen, W. A., Borst, J. & Seed, B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J. Immunol. 147, 3165–3169 (1991).PubMedGoogle Scholar
  123. 123.
    De Jong, R. et al. The CD27- subset of peripheral blood memory CD4+ lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur. J. Immunol. 22, 993–999 (1992).PubMedCrossRefGoogle Scholar
  124. 124.
    Ferrando-Martinez, S., Ruiz-Mateos, E. & Leal, M. CD27 and CCR7 expression on naive T cells, are both necessary? Immunol. Lett. 127, 157–158 (2010).PubMedCrossRefGoogle Scholar
  125. 125.
    Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Romero, P. et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol. 178, 4112–4119 (2007).PubMedCrossRefGoogle Scholar
  127. 127.
    Rufer, N. et al. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787 (2003).PubMedCrossRefGoogle Scholar
  128. 128.
    Schiott, A., Lindstedt, M., Johansson-Lindbom, B., Roggen, E. & Borrebaeck, C. A. CD27- CD4+ memory T cells define a differentiated memory population at both the functional and transcriptional levels. Immunology 113, 363–370 (2004).PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Borthwick, N. J. et al. Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28- T cells. AIDS 8, 431–441 (1994).PubMedCrossRefGoogle Scholar
  130. 130.
    Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Posnett, D. N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med. 179, 609–618 (1994).PubMedCrossRefGoogle Scholar
  132. 132.
    Saukkonen, J. J., Kornfeld, H. & Berman, J. S. Expansion of a CD8+CD28- cell population in the blood and lung of HIV-positive patients. J. Acquir. Immune Def. Syndr. 6, 1194–1204 (1993).Google Scholar
  133. 133.
    Sfikakis, P. P. et al. CD28 expression on T cell subsets in vivo and CD28-mediated T cell response in vitro in patients with rheumatoid arthritis. Arthritis Rheum. 38, 649–654 (1995).PubMedCrossRefGoogle Scholar
  134. 134.
    Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+CD28- and CD8+CD57+ T cells and their role in health and disease. Immunology 134, 17–32 (2011).PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Theo van den Broek
    • 1
    • 2
    • 3
  • José A. M. Borghans
    • 1
  • Femke van Wijk
    • 1
  1. 1.Laboratory of Translational ImmunologyUniversity Medical Centre UtrechtUtrechtNetherlands
  2. 2.Department of Medical MicrobiologyUniversity Medical Centre UtrechtUtrechtNetherlands
  3. 3.Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations