Skip to main content
Log in

THERAPY

Therapeutic base editing in the adult liver

  • News & Views
  • Published:

From Nature Reviews Gastroenterology & Hepatology

View current issue Sign up to alerts

Gene editing to correct inherited liver disorders has promise for future therapeutic intervention, but lack of effective and safe delivery of the gene-editing machinery to hepatocytes complicates its clinical application. Two studies now report efficient delivery to the liver of non-human primates, providing proof of concept for novel treatment of inherited hypercholesterolaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Therapeutic base editing in the liver of macaques upon delivery by lipid nanoparticles.

References

  1. Anzalone, A. V. et al. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  Google Scholar 

  2. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00933-4 (2021).

    Article  PubMed  Google Scholar 

  3. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  Google Scholar 

  4. Song, C.-Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4 (2020).

  5. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  Google Scholar 

  6. Pankowicz, F. P. et al. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat. Commun. 7, 12642 (2016).

    Article  CAS  Google Scholar 

  7. Zabaleta, N. et al. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat. Commun. 9,5454 (2018).

    Article  CAS  Google Scholar 

  8. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Eng. J. Med. 371, 1994–2004 (2014).

    Article  Google Scholar 

  9. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  Google Scholar 

  10. Rigter, T. et al. Moving somatic gene editing to the clinic: routes to market access and reimbursement in Europe. Eur. J. Hum. Genet. https://doi.org/10.1038/s41431-021-00877-y (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piter J. Bosma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulusma, C.C., Bosma, P.J. Therapeutic base editing in the adult liver. Nat Rev Gastroenterol Hepatol 18, 597–598 (2021). https://doi.org/10.1038/s41575-021-00491-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00491-9

  • Springer Nature Limited

Navigation