Skip to main content

Advertisement

Log in

Biliary atresia

  • Primer
  • Published:

From Nature Reviews Disease Primers

View current issue Sign up to alerts

Abstract

Biliary atresia (BA) is a progressive inflammatory fibrosclerosing disease of the biliary system and a major cause of neonatal cholestasis. It affects 1:5,000–20,000 live births, with the highest incidence in Asia. The pathogenesis is still unknown, but emerging research suggests a role for ciliary dysfunction, redox stress and hypoxia. The study of the underlying mechanisms can be conceptualized along the likely prenatal timing of an initial insult and the distinction between the injury and prenatal and postnatal responses to injury. Although still speculative, these emerging concepts, new diagnostic tools and early diagnosis might enable neoadjuvant therapy (possibly aimed at oxidative stress) before a Kasai portoenterostomy (KPE). This is particularly important, as timely KPE restores bile flow in only 50–75% of patients of whom many subsequently develop cholangitis, portal hypertension and progressive fibrosis; 60–75% of patients require liver transplantation by the age of 18 years. Early diagnosis, multidisciplinary management, centralization of surgery and optimized interventions for complications after KPE lead to better survival. Postoperative corticosteroid use has shown benefits, whereas the role of other adjuvant therapies remains to be evaluated. Continued research to better understand disease mechanisms is necessary to develop innovative treatments, including adjuvant therapies targeting the immune response, regenerative medicine approaches and new clinical tests to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Global incidence of biliary atresia.
Fig. 2: Aetiological heterogeneity of biliary atresia.
Fig. 3: BA as a combination of injury and maladaptive response.
Fig. 4: Hypothetical contribution of immune dysregulation to the pathogenesis of biliary atresia.
Fig. 5: Kasai portoenterostomy.
Fig. 6: Potential regenerative strategies in biliary atresia treatment.
Fig. 7: Postoperative follow-up of native liver survivors.
Fig. 8: Future research directions and effects on patient outlook.

Similar content being viewed by others

References

  1. Hartley, J. L., Davenport, M. & Kelly, D. A. Biliary atresia. Lancet 374, 1704–1713 (2009).

    Article  PubMed  Google Scholar 

  2. Chung, P. H. Y., Zheng, S. & Tam, P. K. H. Biliary atresia: East versus West. Semin. Pediatr. Surg. 29, 150950 (2020). A review summarizing the geographical differences in BA aetiology and treatment.

    Article  PubMed  Google Scholar 

  3. Davenport, M., Muntean, A. & Hadzic, N. Biliary atresia: clinical phenotypes and aetiological heterogeneity. J. Clin. Med. 10, 5675 (2021). A description of different BA phenotypes and associated malformations.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lendahl, U., Lui, V. C. H., Chung, P. H. Y. & Tam, P. K. H. Biliary atresia – emerging diagnostic and therapy opportunities. EBioMedicine 74, 103689 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bezerra, J. A. et al. Biliary atresia: clinical and research challenges for the twenty-first century. Hepatology 68, 1163–1173 (2018).

    Article  PubMed  Google Scholar 

  6. Vij, M. & Rela, M. Biliary atresia: pathology, etiology and pathogenesis. Future Sci. OA 6, FSO466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pakarinen, M. P. et al. Outcomes of biliary atresia in the Nordic countries – a multicenter study of 158 patients during 2005-2016. J. Pediatr. Surg. 53, 1509–1515 (2018).

    Article  PubMed  Google Scholar 

  8. Kasai, M. & Suzuki, M. in 50 Landmark Papers Every Pediatric Surgeon Should Know (eds Davenport, M., Aldeiri, B. & Davidson, J.) Ch. 25 (CRC Press, 2023).

  9. Nio, M. Japanese biliary atresia registry. Pediatr. Surg. Int. 33, 1319–1325 (2017).

    Article  PubMed  Google Scholar 

  10. Shneider, B. L. et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J. Pediatr. 148, 467–474 (2006).

    Article  PubMed  Google Scholar 

  11. Davenport, M. et al. Seamless management of biliary atresia in England and Wales (1999-2002). Lancet 363, 1354–1357 (2004).

    Article  PubMed  Google Scholar 

  12. Tam, P. K. H., Yiu, R. S., Lendahl, U. & Andersson, E. R. Cholangiopathies – towards a molecular understanding. EBioMedicine 35, 381–393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng, G. et al. Common genetic variants regulating ADD3 gene expression alter biliary atresia risk. J. Hepatol. 59, 1285–1291 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nomden, M. et al. A higher incidence of isolated biliary atresia in rural areas: results from an epidemiological study in the Netherlands. J. Pediatr. Gastroenterol. Nutr. 72, 202–209 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Fanna, M. et al. Management of biliary atresia in France 1986 to 2015: long-term results. J. Pediatr. Gastroenterol. Nutr. 69, 416–424 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Grizelj, R., Vuković, J., Novak, M. & Batinica, S. Biliary atresia: the Croatian experience 1992-2006. Eur. J. Pediatr. 169, 1529–1534 (2010).

    Article  PubMed  Google Scholar 

  17. Schreiber, R. A. et al. Biliary atresia: the Canadian experience. J. Pediatr. 151, 659–665.e1 (2007).

    Article  PubMed  Google Scholar 

  18. Hopkins, P. C., Yazigi, N. & Nylund, C. M. Incidence of biliary atresia and timing of hepatoportoenterostomy in the United States. J. Pediatr. 187, 253–257 (2017).

    Article  PubMed  Google Scholar 

  19. Livesey, E. et al. Epidemiology of biliary atresia in England and Wales (1999-2006). Arch. Dis. Child. Fetal Neonatal Ed. 94, F451–F455 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Wildhaber, B. E. e t al. Biliary atresia: Swiss national study, 1994-2004. J. Pediatr. Gastroenterol. Nutr. 46, 299–307 (2008).

    Article  PubMed  Google Scholar 

  21. Hukkinen, M. et al. Treatment policy and liver histopathology predict biliary atresia outcomes: results after national centralization and protocol biopsies. J. Am. Coll. Surg. 226, 46–57.e1 (2018).

    Article  PubMed  Google Scholar 

  22. Fischler, B., Haglund, B. & Hjern, A. A population-based study on the incidence and possible pre- and perinatal etiologic risk factors of biliary atresia. J. Pediatr. 141, 217–222 (2002).

    Article  PubMed  Google Scholar 

  23. Lin, J. S. et al. Reduction of the ages at diagnosis and operation of biliary atresia in Taiwan: a 15-year population-based cohort study. World J. Gastroenterol. 21, 13080–13086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nio, M. et al. Five- and 10-year survival rates after surgery for biliary atresia: a report from the Japanese biliary atresia registry. J. Pediatr. Surg. 38, 997–1000 (2003).

    Article  PubMed  Google Scholar 

  25. Lee, K. J., Kim, J. W., Moon, J. S. & Ko, J. S. Epidemiology of biliary atresia in Korea. J. Korean Med. Sci. 32, 656–660 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Evans, H. M. et al. Ethnic disparity in the incidence and outcome of biliary atresia in New Zealand. J. Pediatr. Gastroenterol. Nutr. 66, 218–221 (2018).

    Article  PubMed  Google Scholar 

  27. Durkin, N., Deheragoda, M. & Davenport, M. Prematurity and biliary atresia: a 30-year observational study. Pediatr. Surg. Int. 33, 1355–1361 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Caton, A. R., Druschel, C. M. & McNutt, L. A. The epidemiology of extrahepatic biliary atresia in New York State, 1983-98. Paediatr. Perinat. Epidemiol. 18, 97–105 (2004).

    Article  PubMed  Google Scholar 

  29. Yoon, P. W., Bresee, J. S., Olney, R. S., James, L. M. & Khoury, M. J. Epidemiology of biliary atresia: a population-based study. Pediatrics 99, 376–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Wada, H. et al. Insignificant seasonal and geographical variation in incidence of biliary atresia in Japan: a regional survey of over 20 years. J. Pediatr. Surg. 42, 2090–2092 (2007).

    Article  PubMed  Google Scholar 

  31. Chardot, C. et al. Prognosis of biliary atresia in the era of liver transplantation: French national study from 1986 to 1996. Hepatology 30, 606–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y. C. et al. Decreasing rate of biliary atresia in Taiwan: a survey, 2004-2009. Pediatrics 128, e530–e536 (2011).

    Article  PubMed  Google Scholar 

  33. Nomden, M. et al. Incidence of isolated biliary atresia during the COVID lockdown in Europe: results from a collaborative project by RARE-liver. J. Clin. Med. 12, 775 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhan, J., Feng, J., Chen, Y., Liu, J. & Wang, B. Incidence of biliary atresia associated congenital malformations: a retrospective multicenter study in China. Asian J. Surg. 40, 429–433 (2017).

    Article  PubMed  Google Scholar 

  35. Davenport, M. et al. The biliary atresia splenic malformation syndrome: a 28-year single-center retrospective study. J. Pediatr. 149, 393–400 (2006).

    Article  PubMed  Google Scholar 

  36. Guttman, O. R. et al. Biliary atresia with associated structural malformations in Canadian infants. Liver Int. 31, 1485–1493 (2011).

    Article  PubMed  Google Scholar 

  37. Chang, C. M. et al. Maternal risk factors associated with offspring biliary atresia: population-based study. Pediatr. Res. 93, 1064–1071 (2023). The key study revealing an association between maternal infections and BA development in the offspring.

    Article  CAS  PubMed  Google Scholar 

  38. Cavallo, L. et al. The epidemiology of biliary atresia: exploring the role of developmental factors on birth prevalence. J. Pediatr. 246, 89–94.e2 (2022). A large population-based study describing risk factors for BA during fetal development.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, W. H., Chiu, F. Y., Kuo, T. T. & Shao, Y. J. Maternal prenatal infections and biliary atresia in offspring. JAMA Netw. Open. 7, e2350044 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Howley, M. M. et al. Asthma medication use and risk of birth defects: national birth defects prevention study, 1997-2011. J. Allergy Clin. Immunol. Pract. 8, 3490–3499.e9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Costa, C. M. et al. In vitro fertilization: an unexpected finding in a cohort of patients with biliary atresia. Braz. J. Med. Biol. Res. 56, e12671 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fischler, B. et al. Incidence, impact and treatment of ongoing CMV infection in patients with biliary atresia in four European centres. J. Clin. Med. 11, 945 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rauschenfels, S. et al. Incidence of hepatotropic viruses in biliary atresia. Eur. J. Pediatr. 168, 469–476 (2009).

    Article  PubMed  Google Scholar 

  44. Zani, A., Quaglia, A., Hadzic, N., Zuckerman, M. & Davenport, M. Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup. J. Pediatr. Surg. 50, 1739–1745 (2015).

    Article  PubMed  Google Scholar 

  45. Xu, Y. et al. The perinatal infection of cytomegalovirus is an important etiology for biliary atresia in China. Clin. Pediatr. 51, 109–113 (2012).

    Article  Google Scholar 

  46. van Wessel, D. B. E. et al. Preterm infants with biliary atresia: a nationwide cohort analysis from The Netherlands. J. Pediatr. Gastroenterol. Nutr. 65, 370–374 (2017).

    Article  PubMed  Google Scholar 

  47. Chiu, C. Y. et al. Biliary atresia in preterm infants in Taiwan: a nationwide survey. J. Pediatr. 163, 100–103.e1 (2013).

    Article  PubMed  Google Scholar 

  48. Kemme, S. et al. Cytomegalovirus in biliary atresia is associated with increased pretransplant death, but not decreased native liver survival. Hepatol. Commun. 7, e0175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhao, Y., Xu, X., Liu, G., Yang, F. & Zhan, J. Prognosis of biliary atresia associated with cytomegalovirus: a meta-analysis. Front. Pediatr. 9, 710450 (2021). The largest analysis on CMV-associated BA demonstrating an association with inferior outcomes after KPE.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Muntean, A., Kronfli, R., Makin, E. & Davenport, M. The AST-to-platelet ratio index (APRi) at Kasai portoenterostomy: standing the test of time. J. Pediatr. Surg. 58, 2347–2351 (2023).

    Article  PubMed  Google Scholar 

  51. Fischler, B., Ehrnst, A., Forsgren, M., Orvell, C. & Nemeth, A. The viral association of neonatal cholestasis in Sweden: a possible link between cytomegalovirus infection and extrahepatic biliary atresia. J. Pediatr. Gastroenterol. Nutr. 27, 57–64 (1998).

    CAS  PubMed  Google Scholar 

  52. Shen, C., Zheng, S., Wang, W. & Xiao, X. M. Relationship between prognosis of biliary atresia and infection of cytomegalovirus. World J. Pediatr. 4, 123–126 (2008).

    Article  PubMed  Google Scholar 

  53. Nio, M., Wada, M., Sasaki, H., Tanaka, H. & Watanabe, T. Long-term outcomes of biliary atresia with splenic malformation. J. Pediatr. Surg. 50, 2124–2127 (2015).

    Article  PubMed  Google Scholar 

  54. Tralongo, P. et al. Biliary atresia in an infant presenting with Kabuki syndrome: an autopsy report and review of the literature. Pediatr. Dev. Pathol. 26, 318–320 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Allotey, J. et al. Congenital bile duct anomalies (biliary atresia) and chromosome 22 aneuploidy. J. Pediatr. Surg. 43, 1736–1740 (2008).

    Article  PubMed  Google Scholar 

  56. Aldeiri, B. et al. Cardiac-associated biliary atresia (CABA): a prognostic subgroup. Arch. Dis. Child. 106, 68–72 (2021).

    Article  PubMed  Google Scholar 

  57. Gupta, L. & Bhatnagar, V. A study of associated congenital anomalies with biliary atresia. J. Indian. Assoc. Pediatr. Surg. 21, 10–13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwarz, K. B. et al. Extrahepatic anomalies in infants with biliary atresia: results of a large prospective North American multicenter study. Hepatology 58, 1724–1731 (2013).

    Article  PubMed  Google Scholar 

  59. Harpavat, S., Finegold, M. J. & Karpen, S. J. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 128, e1428–e1433 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harpavat, S. et al. Diagnostic yield of newborn screening for biliary atresia using direct or conjugated bilirubin measurements. JAMA 323, 1141–1150 (2020). A representative paper on newborn screening for BA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kastenberg, Z. J. et al. Fractionated bilirubin among 252 892 Utah newborns with and without biliary atresia: a 15-year historical birth cohort study. J. Pediatr. 257, 113339 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt, H. C. et al. Biliatresone induces cholangiopathy in C57BL/6J neonates. Sci. Rep. 13, 10574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, Y. et al. The synthetic toxin biliatresone causes biliary atresia in mice. Lab. Invest. 100, 1425–1435 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Lemaigre, F. P. Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases. Annu. Rev. Pathol. 15, 1–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. de Jong, I. E. M., van den Heuvel, M. C., Wells, R. G. & Porte, R. J. The heterogeneity of the biliary tree. J. Hepatol. 75, 1236–1238 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. de Jong, I. E. M. & Wells, R. G. In utero extrahepatic bile duct damage and repair: implications for biliary atresia. Pediatr. Dev. Pathol. https://doi.org/10.1177/10935266241247479 (2024).

  67. de Jong, I. E. M. et al. Peribiliary glands are key in regeneration of the human biliary epithelium after severe bile duct injury. Hepatology 69, 1719–1734 (2019).

    Article  PubMed  Google Scholar 

  68. Singh, S. et al. Heterogeneous murine peribiliary glands orchestrate compartmentalized epithelial renewal. Dev. Cell 58, 2732–2745.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. de Jong, I. E. M. et al. A fetal wound healing program after intrauterine bile duct injury may contribute to biliary atresia. J. Hepatol. 79, 1396–1407 (2023). Experimental and clinical evidence of an injury response typical of fetal wound healing in BA.

    Article  PubMed  Google Scholar 

  70. Riepenhoff-Talty, M. et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr. Res. 33, 394–399 (1993).

    CAS  PubMed  Google Scholar 

  71. Mohanty, S. K. et al. Rotavirus reassortant-induced murine model of liver fibrosis parallels human biliary atresia. Hepatology 71, 1316–1330 (2020). This report introduces an improved RRV mouse model for study of experimental BA and hepatic fibrosis.

    Article  CAS  PubMed  Google Scholar 

  72. Garrido, M. et al. Bile duct ligature in young rats: a revisited animal model for biliary atresia. Eur. J. Histochem. 61, 2803 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gupta, K. et al. Low-dose biliatresone treatment of pregnant mice causes subclinical biliary disease in their offspring: evidence for a spectrum of neonatal injury. PLoS ONE 19, e0301824 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lorent, K. et al. Identification of a plant isoflavonoid that causes biliary atresia. Sci. Transl. Med. 7, 286ra267 (2015). A zebrafish study providing a proof-of-concept demonstration that a toxin can initiate experimental BA.

    Article  Google Scholar 

  75. Zhao, X. et al. Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology 64, 894–907 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Cheung, Y. et al. Deletion of interleukin enhancer binding factor 2 (ILF2) resulted in defective biliary development and bile flow blockage. J. Pediatr. Surg. 56, 352–359 (2021).

    Article  PubMed  Google Scholar 

  77. Cui, S. et al. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144, 1107–1115.e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Lam, W. Y. et al. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine 71, 103530 (2021). This paper highlights ciliary dysfunction as a major genetic susceptibility factor in patients with non-syndromic BA, and implicates BA as a more generalized ciliopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, V. et al. Loss of a candidate biliary atresia susceptibility gene, add3a, causes biliary developmental defects in zebrafish. J. Pediatr. Gastroenterol. Nutr. 63, 524–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cofer, Z. C. et al. Methylation microarray studies highlight PDGFA expression as a factor in biliary atresia. PLoS ONE 11, e0151521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Matthews, R. P. et al. DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology 53, 905–914 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2, e94954 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sato, K. et al. Organoids and spheroids as models for studying cholestatic liver injury and cholangiocarcinoma. Hepatology 74, 491–502 (2021).

    Article  PubMed  Google Scholar 

  85. Roos, F. J. M. et al. Cholangiocyte organoids from human bile retain a local phenotype and can repopulate bile ducts in vitro. Clin. Transl. Med. 11, e566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soroka, C. J. et al. Bile-derived organoids from patients with primary sclerosing cholangitis recapitulate their inflammatory immune profile. Hepatology 70, 871–882 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Babu, R. O. et al. Beta-amyloid deposition around hepatic bile ducts is a novel pathobiological and diagnostic feature of biliary atresia. J. Hepatol. 73, 1391–1403 (2020). A key study establishing human BA organoids as a valid disease model and identifying β-amyloid as a novel pathobiological factor.

    Article  CAS  PubMed  Google Scholar 

  88. Amarachintha, S. P. et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia. Hepatology 75, 89–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Tian, L. et al. Biliary atresia relevant human induced pluripotent stem cells recapitulate key disease features in a dish. J. Pediatr. Gastroenterol. Nutr. 68, 56–63 (2019).

    Article  PubMed  Google Scholar 

  90. Waisbourd-Zinman, O. et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology 64, 880–893 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Du, Y. et al. A bile duct-on-a-chip with organ-level functions. Hepatology 71, 1350–1363 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Du, Y. et al. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication 16, 015004 (2023).

    Article  PubMed Central  Google Scholar 

  93. Garcia-Barceló, M. M. et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum. Mol. Genet. 19, 2917–2925 (2010). Benchmark study showing that genetic predisposition by common regulatory variants increases the risk of BA.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen, Y. et al. A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1. PLoS Genet. 14, e1007532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. So, J. et al. Biliary-atresia-associated mannosidase-1-alpha-2 gene regulates biliary and ciliary morphogenesis and laterality. Front. Physiol. 11, 538701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ningappa, M. et al. The role of ARF6 in biliary atresia. PLoS ONE 10, e0138381 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Glessner, J. T. et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J. Hepatol. 79, 1385–1395 (2023). This study highlights common variants dysregulating ciliary genes predisposing to a higher risk of developing BA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chu, A. S., Russo, P. A. & Wells, R. G. Cholangiocyte cilia are abnormal in syndromic and non-syndromic biliary atresia. Mod. Pathol. 25, 751–757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karjoo, S. et al. Extrahepatic cholangiocyte cilia are abnormal in biliary atresia. J. Pediatr. Gastroenterol. Nutr. 57, 96–101 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Frassetto, R. et al. Intrahepatic bile duct primary cilia in biliary atresia. Hepatol. Res. 48, 664–674 (2018).

    Article  PubMed  Google Scholar 

  101. Berauer, J. P. et al. Identification of polycystic kidney disease 1 like 1 gene variants in children with biliary atresia splenic malformation syndrome. Hepatology 70, 899–910 (2019). A key study identifying rare damaging mutations in ciliary genes linked to BASM.

    Article  CAS  PubMed  Google Scholar 

  102. Hellen, D. J. et al. Liver-restricted deletion of the biliary atresia candidate gene Pkd1l1 causes bile duct dysmorphogenesis and ciliopathy. Hepatology 77, 1274–1286 (2023).

    Article  PubMed  Google Scholar 

  103. Lim, Y. Z. et al. Pkd1l1-deficiency drives biliary atresia through ciliary dysfunction in biliary epithelial cells. J. Hepatol. https://doi.org/10.1016/j.jhep.2024.02.031 (2024).

  104. Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mill, P., Christensen, S. T. & Pedersen, L. B. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 24, 421–441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mansini, A. P. et al. The cholangiocyte primary cilium in health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1245–1253 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Toriyama, M. et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 48, 648–656 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsai, E. A. et al. Replication of a GWAS signal in a Caucasian population implicates ADD3 in susceptibility to biliary atresia. Hum. Genet. 133, 235–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Hai-Bing, Y. et al. Environmental toxin biliatresone-induced biliary atresia-like abnormal cilia and bile duct cell development of human liver organoids. Toxins 16, 144 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Barnes, B. H. et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia. Liver Int. 29, 1253–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Mack, C. L. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin. Liver Dis. 27, 233–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Averbukh, L. D. & Wu, G. Y. Evidence for viral induction of biliary atresia: a review. J. Clin. Transl. Hepatol. 6, 410–419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Saito, T. et al. Evidence for viral infection as a causative factor of human biliary atresia. J. Pediatr. Surg. 50, 1398–1404 (2015).

    Article  PubMed  Google Scholar 

  114. Zhao, D. et al. Effects of cytomegalovirus infection on the differential diagnosis between biliary atresia and intrahepatic cholestasis in a Chinese large cohort study. Ann. Hepatol. 23, 100286 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Moore, S. W., Zabiegaj-Zwick, C. & Nel, E. Problems related to CMV infection and biliary atresia. S. Afr. Med. J. 102, 890–892 (2012).

    Article  PubMed  Google Scholar 

  116. Gilger, M. A. et al. Extraintestinal rotavirus infections in children with immunodeficiency. J. Pediatr. 120, 912–917 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Clemente, M. G., Patton, J. T., Anders, R. A., Yolken, R. H. & Schwarz, K. B. Rotavirus infects human biliary epithelial cells and stimulates secretion of cytokines IL-6 and IL-8 via MAPK pathway. Biomed. Res. Int. 2015, 697238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Petersen, C. et al. Progress in developing animal models for biliary atresia. Eur. J. Pediatr. Surg. 8, 137–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Riepenhoff-Talty, M. et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J. Infect. Dis. 174, 8–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Bobo, L. et al. Lack of evidence for rotavirus by polymerase chain reaction/enzyme immunoassay of hepatobiliary samples from children with biliary atresia. Pediatr. Res. 41, 229–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Clemente, M. G. et al. Prevalence of groups A and C rotavirus antibodies in infants with biliary atresia and cholestatic controls. J. Pediatr. 166, 79–84 (2015).

    Article  PubMed  Google Scholar 

  122. Harper, P., Plant, J. W. & Unger, D. B. Congenital biliary atresia and jaundice in lambs and calves. Aust. Vet. J. 67, 18–22 (1990).

    Article  CAS  PubMed  Google Scholar 

  123. Koo, K. A. et al. Biliatresone, a reactive natural toxin from Dysphania glomulifera and D. littoralis: discovery of the toxic moiety 1,2-diaryl-2-propenone. Chem. Res. Toxicol. 28, 1519–1521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Estrada, M. A. et al. Synthesis and structure-activity relationship study of biliatresone, a plant isoflavonoid that causes biliary atresia. ACS Med. Chem. Lett. 9, 61–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Koo, K. A., Waisbourd-Zinman, O., Wells, R. G., Pack, M. & Porter, J. R. Reactivity of biliatresone, a natural biliary toxin, with glutathione, histamine, and amino acids. Chem. Res. Toxicol. 29, 142–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kotb, M. A. Aflatoxins in infants with extrahepatic biliary atresia. Med. J. Cairo Univ. 83, 207–210 (2015).

    Google Scholar 

  127. Kotb, M. A. & Kotb, A. Glutathione S transferase M1 polymorphism in extrahepatic biliary atresia. Med. J. Cairo Univ. 83, 109–112 (2015).

    Google Scholar 

  128. Jee, J. et al. Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia. PLoS ONE 12, e0182089 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jee, J. J. et al. Maternal regulation of biliary disease in neonates via gut microbial metabolites. Nat. Commun. 13, 18 (2022). This study demonstrates a key role for the microbiome and butyrate metabolism in BA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, J. et al. Gut microbial profile in biliary atresia: a case-control study. J. Gastroenterol. Hepatol. 35, 334–342 (2020).

    Article  PubMed  Google Scholar 

  131. Hansen, J. M. & Harris, C. Redox control of teratogenesis. Reprod. Toxicol. 35, 165–179 (2013). A review of teratogens that induce ROS and oxidative injury, their teratogenic mechanisms and the rationale for targeted interventions.

    Article  CAS  PubMed  Google Scholar 

  132. Jauniaux, E., Watson, A. & Burton, G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am. J. Obstet. Gynecol. 184, 998–1003 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Turner, J. M., Mitchell, M. D. & Kumar, S. S. The physiology of intrapartum fetal compromise at term. Am. J. Obstet. Gynecol. 222, 17–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Min, J. et al. Systems analysis of biliary atresia through integration of high-throughput biological data. Front. Physiol. 11, 966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Quelhas, P. et al. HIF-1alpha-pathway activation in cholangiocytes of patients with biliary atresia: an immunohistochemical/molecular exploratory study. J. Pediatr. Surg. 58, 587–594 (2023).

    Article  PubMed  Google Scholar 

  136. Wang, D. et al. Identifying and validating molecular subtypes of biliary atresia using multiple high-throughput data integration analysis. Front. Immunol. 13, 1008246 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Luo, Z., Shivakumar, P., Mourya, R., Gutta, S. & Bezerra, J. A. Gene expression signatures associated with survival times of pediatric patients with biliary atresia identify potential therapeutic agents. Gastroenterology 157, 1138–1152.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Foo, J., Bellot, G., Pervaiz, S. & Alonso, S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 30, 679–692 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Speir, E., Shibutani, T., Yu, Z. X., Ferrans, V. & Epstein, S. E. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection. Circ. Res. 79, 1143–1152 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Buonocore, G. et al. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr. Res. 52, 46–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Ye, R. et al. Single cell RNA-sequencing analysis reveals that N-acetylcysteine partially reverses hepatic immune dysfunction in biliary atresia. JHEP Rep. 5, 100908 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Khandekar, G. et al. Coordinated development of the mouse extrahepatic bile duct: implications for neonatal susceptibility to biliary injury. J. Hepatol. 72, 135–145 (2020). This study identified key differences in the extrahepatic mouse bile duct between neonates and adults, suggesting that the neonatal EHBD is particularly susceptible to injury and fibrosis.

    Article  CAS  PubMed  Google Scholar 

  143. Maillette de Buy Wenniger, L. J. et al. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3 umbrella’: an integrated line of defense against toxic bile acids. Dig. Dis. 33, 397–407 (2015).

    Article  PubMed  Google Scholar 

  144. Dotan, M. et al. Periductal bile acid exposure causes cholangiocyte injury and fibrosis. PLoS ONE 17, e0265418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Colombo, C., Zuliani, G., Ronchi, M., Breidenstein, J. & Setchell, K. D. Biliary bile acid composition of the human fetus in early gestation. Pediatr. Res. 21, 197–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. Hardy, K. J., Hoffman, N. E., Mihaly, G., Sewell, R. B. & Smallwood, R. A. Bile acid metabolism in fetal sheep; perinatal changes in the bile acid pool. J. Physiol. 309, 1–11 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shivakumar, P., Sabla, G. E., Whitington, P., Chougnet, C. A. & Bezerra, J. A. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J. Clin. Invest. 119, 2281–2290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shivakumar, P., Mourya, R. & Bezerra, J. A. Perforin and granzymes work in synergy to mediate cholangiocyte injury in experimental biliary atresia. J. Hepatol. 60, 370–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Li, J. et al. Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype. J. Clin. Invest. 121, 4244–4256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mack, C. L. et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 133, 278–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, J. et al. Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell 183, 1867–1883.e26 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Luo, Y. et al. Unique cholangiocyte-targeted IgM autoantibodies correlate with poor outcome in biliary atresia. Hepatology 73, 1855–1867 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Bednarek, J. et al. Cytokine-producing B cells promote immune-mediated bile duct injury in murine biliary atresia. Hepatology 68, 1890–1904 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Feldman, A. G., Tucker, R. M., Fenner, E. K., Pelanda, R. & Mack, C. L. B cell deficient mice are protected from biliary obstruction in the rotavirus-induced mouse model of biliary atresia. PLoS ONE 8, e73644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qiu, Y. et al. HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia. PLoS Pathog. 10, e1004011 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lages, C. S. et al. The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65, 174–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Antala, S. et al. Single-cell sequencing of a novel model of neonatal bile duct ligation in mice identifies macrophage heterogeneity in obstructive cholestasis. Sci. Rep. 13, 14104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, J. et al. NLRP3 inflammasome activation promotes liver inflammation and fibrosis in experimental biliary atresia. Dig. Liver Dis. 56, 458–467 (2023).

    Article  PubMed  Google Scholar 

  159. Taylor, S. A. et al. Transcriptional profiling of pediatric cholestatic livers identifies three distinct macrophage populations. PLoS ONE 16, e0244743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Saxena, V. et al. Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia. Sci. Transl. Med. 3, 102ra194 (2011).

    Article  Google Scholar 

  161. Zhang, R., Huang, J., Shan, J., Chen, Y. & Xia, H. Peripheral blood CD177+ cells as an early diagnostic marker for biliary atresia: a prospective multicentre study in pediatric patients with cholestasis. J. Hepatol. 77, 1714–1716 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Zhang, R. et al. CD177+ cells produce neutrophil extracellular traps that promote biliary atresia. J. Hepatol. 77, 1299–1310 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Ye, C. et al. Single-cell and spatial transcriptomics reveal the fibrosis-related immune landscape of biliary atresia. Clin. Transl. Med. 12, e1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shivakumar, P. et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-γ in experimental biliary atresia. J. Clin. Invest. 114, 322–329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shivakumar, P. et al. Preferential TNFɑ signaling via TNFR2 regulates epithelial injury and duct obstruction in experimental biliary atresia. JCI Insight 2, e88747 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mack, C. L. et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr. Res. 56, 79–87 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, J. et al. Correlation of interleukin-33/ST2 receptor and liver fibrosis progression in biliary atresia patients. Front. Pediatr. 7, 403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Behairy, O. G. et al. Clinical value of serum interleukin-33 biomarker in infants with neonatal cholestasis. J. Pediatr. Gastroenterol. Nutr. 70, 344–349 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Russi, A. E., Shivakumar, P., Luo, Z. & Bezerra, J. A. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 78, 1035–1049 (2023).

    Article  PubMed  Google Scholar 

  170. Feldman, A. G. & Mack, C. L. Biliary atresia: cellular dynamics and immune dysregulation. Semin. Pediatr. Surg. 21, 192–200 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rajendeeran, A. & Tenbrock, K. Regulatory T cell function in autoimmune disease. J. Transl. Autoimmun. 4, 100130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mack, C. L. et al. Cellular and humoral autoimmunity directed at bile duct epithelia in murine biliary atresia. Hepatology 44, 1231–1239 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Tucker, R. M., Feldman, A. G., Fenner, E. K. & Mack, C. L. Regulatory T cells inhibit Th1 cell-mediated bile duct injury in murine biliary atresia. J. Hepatol. 59, 790–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Brindley, S. M. et al. Cytomegalovirus-specific T-cell reactivity in biliary atresia at the time of diagnosis is associated with deficits in regulatory T cells. Hepatology 55, 1130–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Lages, C. S., Simmons, J., Chougnet, C. A. & Miethke, A. G. Regulatory T cells control the CD8 adaptive immune response at the time of ductal obstruction in experimental biliary atresia. Hepatology 56, 219–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Miethke, A. G. et al. Post-natal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia. J. Hepatol. 52, 718–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, K. et al. Foxp3 promoter methylation impairs suppressive function of regulatory T cells in biliary atresia. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G989–G997 (2016).

    Article  PubMed  Google Scholar 

  178. Kim, S. et al. Correlation of immune markers with outcomes in biliary atresia following intravenous immunoglobulin therapy. Hepatol. Commun. 3, 685–696 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Muraji, T. et al. New insights in understanding biliary atresia from the perspectives on maternal microchimerism. Front. Pediatr. 10, 1007987 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Suskind, D. L. et al. Maternal microchimerism in the livers of patients with biliary atresia. BMC Gastroenterol. 4, 14 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kobayashi, H. et al. Maternal microchimerism in biliary atresia. J. Pediatr. Surg. 42, 987–991 (2007).

    Article  PubMed  Google Scholar 

  182. Hayashida, M. et al. The evidence of maternal microchimerism in biliary atresia using fluorescent in situ hybridization. J. Pediatr. Surg. 42, 2097–2101 (2007).

    Article  PubMed  Google Scholar 

  183. Muraji, T. et al. Maternal microchimerism in underlying pathogenesis of biliary atresia: quantification and phenotypes of maternal cells in the liver. Pediatrics 121, 517–521 (2008).

    Article  PubMed  Google Scholar 

  184. Muraji, T. Maternal microchimerism in biliary atresia: are maternal cells effector cells, targets, or just bystanders. Chimerism 5, 1–5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Al-Hakim, A., Mistry, A. & Savic, S. Improving diagnosis and clinical management of acquired systemic autoinflammatory diseases. J. Inflamm. Res. 15, 5739–5755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang, L. et al. Regulation of epithelial injury and bile duct obstruction by NLRP3, IL-1R1 in experimental biliary atresia. J. Hepatol. 69, 1136–1144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bertolini, A., Fiorotto, R. & Strazzabosco, M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin. Immunopathol. 44, 547–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yang, H. et al. Inflammation mediated down-regulation of hepatobiliary transporters contributes to intrahepatic cholestasis and liver damage in murine biliary atresia. Pediatr. Res. 66, 380–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Azeltine, M. W. et al. Inflammation brives microRNAs to limit hepatocyte bile acid transport in murine biliary atresia. J. Surg. Res. 256, 663–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Ma, Y. et al. Reduced peroxisome proliferator-activated receptor-ɑ and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia. Front. Immunol. 13, 875593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126, 1172–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Trampert, D. C. & Beuers, U. A beneficial response of fetal wound healing gone bad in the bile duct: the overarching cause of biliary atresia. J. Hepatol. 80, 387–389 (2024).

    Article  PubMed  Google Scholar 

  193. Lertudomphonwanit, C. et al. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci. Transl. Med. 9, eaan8462 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Jiang, J. et al. Serum MMP-7 in the diagnosis of biliary atresia. Pediatrics 144, e20190902 (2019). This report highlights the value of serum MMP7 as a diagnostic biomarker.

    Article  PubMed  Google Scholar 

  195. Huang, C. C. et al. Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis. Mod. Pathol. 18, 941–950 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Fawaz, R. et al. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 64, 154–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Feldman, A. G. & Sokol, R. J. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat. Rev. Gastroenterol. Hepatol. 16, 346–360 (2019).

    Article  PubMed  Google Scholar 

  198. Zhou, W. & Zhou, L. Ultrasound for the diagnosis of biliary atresia: from conventional ultrasound to artificial intelligence. Diagnostics 12, 51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Caponcelli, E., Knisely, A. S. & Davenport, M. Cystic biliary atresia: an etiologic and prognostic subgroup. J. Pediatr. Surg. 43, 1619–1624 (2008).

    Article  PubMed  Google Scholar 

  200. Chan, W. K., Chung, P. H. Y. & Wong, K. K. Y. The value of hepatic scintigraphy in the diagnosis of biliary atresia. Front. Pediatr. 10, 874809 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Russo, P. et al. Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: a multicenter study. Am. J. Surg. Pathol. 40, 1601–1615 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Russo, P. et al. Design and validation of the Biliary Atresia Research Consortium histologic assessment system for cholestasis in infancy. Clin. Gastroenterol. Hepatol. 9, 357–362.e2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Azar, G. et al. Atypical morphologic presentation of biliary atresia and value of serial liver biopsies. J. Pediatr. Gastroenterol. Nutr. 34, 212–215 (2002).

    PubMed  Google Scholar 

  204. He, L. et al. Biomarkers for the diagnosis and post-Kasai portoenterostomy prognosis of biliary atresia: a systematic review and meta-analysis. Sci. Rep. 11, 11692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pandurangi, S. et al. Diagnostic accuracy of serum matrix metalloproteinase-7 as a biomarker of biliary atresia in a large North American cohort. Hepatology https://doi.org/10.1097/HEP.0000000000000827 (2024).

  206. Jiang, J. et al. Protocol for a diagnostic accuracy study to develop diagnosis algorithm for biliary atresia using MMP-7 (DIABA-7 study): a study recruiting from Chinese Biliary Atresia Collaborative Network. BMJ Open. 11, e052328 (2021).

    Article  PubMed Central  Google Scholar 

  207. Davenport, M. Serum matrix metalloproteinase-7 (MMP-7): as good as it gets? Hepatology https://doi.org/10.1097/HEP.0000000000000835 (2024).

  208. Lyu, H. et al. Plasma amyloid-beta levels correlated with impaired hepatic functions: an adjuvant biomarker for the diagnosis of biliary atresia. Front. Surg. 9, 931637 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Boo, Y. A. et al. Diagnostic performance of transient elastography in biliary atresia among infants with cholestasis. Hepatol. Commun. 5, 882–890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wagner, E. S. et al. Use of shear wave elastography for the diagnosis and follow-up of biliary atresia: a meta-analysis. World J. Gastroenterol. 28, 4726–4740 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Rabbani, T., Guthery, S. L., Himes, R., Shneider, B. L. & Harpavat, S. Newborn screening for biliary atresia: a review of current methods. Curr. Gastroenterol. Rep. 23, 28 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lien, T. H. et al. Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 53, 202–208 (2011).

    Article  PubMed  Google Scholar 

  213. Schreiber, R. A. et al. Home-based screening for biliary atresia using infant stool colour cards: a large-scale prospective cohort study and cost-effectiveness analysis. J. Med. Screen. 21, 126–132 (2014).

    Article  PubMed  Google Scholar 

  214. Mogul, D., Zhou, M., Intihar, P., Schwarz, K. & Frick, K. Cost-effective analysis of screening for biliary atresia with the stool color card. J. Pediatr. Gastroenterol. Nutr. 60, 91–98 (2015).

    Article  PubMed  Google Scholar 

  215. Matsui, A. & Dodoriki, M. Screening for biliary atresia. Lancet 345, 1181 (1995).

    Article  CAS  PubMed  Google Scholar 

  216. Zheng, J., Ye, Y., Wang, B. & Zhang, L. Biliary atresia screening in Shenzhen: implementation and achievements. Arch. Dis. Child. 105, 720–723 (2020).

    Article  PubMed  Google Scholar 

  217. Powell, J. E., Keffler, S., Kelly, D. A. & Green, A. Population screening for neonatal liver disease: potential for a community-based programme. J. Med. Screen. 10, 112–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Harpavat, S., Garcia-Prats, J. A. & Shneider, B. L. Newborn bilirubin screening for biliary atresia. N. Engl. J. Med. 375, 605–606 (2016).

    Article  PubMed  Google Scholar 

  219. Schreiber, R. A. Newborn screening for biliary atresia. JAMA 323, 1137–1138 (2020).

    Article  PubMed  Google Scholar 

  220. Kasai, M. & Suzuki, M. A new operation for “non-correctable” biliary atresia – portoenterostomy. Shijitsu 13, 733–739 (1959).

    Google Scholar 

  221. Ohi, R. A history of the Kasai operation: hepatic portoenterostomy for biliary atresia. World J. Surg. 12, 871–874 (1988).

    Article  CAS  PubMed  Google Scholar 

  222. Ogasawara, Y. et al. The intussusception antireflux valve is ineffective for preventing cholangitis in biliary atresia: a prospective study. J. Pediatr. Surg. 38, 1826–1829 (2003).

    Article  PubMed  Google Scholar 

  223. Li, Y. et al. Medium-term outcome of laparoscopic Kasai portoenterostomy for biliary atresia with 49 cases. J. Pediatr. Gastroenterol. Nutr. 66, 857–860 (2018).

    Article  PubMed  Google Scholar 

  224. Ji, Y. et al. The short-term outcome of modified laparoscopic Kasai portoenterostomy for biliary atresia. Surg. Endosc. 35, 1429–1434 (2021).

    Article  PubMed  Google Scholar 

  225. Zhang, M. et al. Robotic-assisted Kasai portoenterostomy for biliary atresia. Surg. Endosc. 37, 3540–3547 (2023).

    Article  PubMed  Google Scholar 

  226. Phelps, H. M. et al. Enhancing recovery after kasai portoenterostomy with epidural analgesia. J. Surg. Res. 243, 354–362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sun, X. et al. A prospective study comparing laparoscopic and conventional Kasai portoenterostomy in children with biliary atresia. J. Pediatr. Surg. 51, 374–378 (2016).

    Article  PubMed  Google Scholar 

  228. Tsukui, T. et al. Biochemical evaluation of laparoscopic portoenterostomy for treating biliary atresia and redo for failed portoenterostomy. J. Laparoendosc. Adv. Surg. Tech. A 32, 1212–1219 (2022).

    Article  PubMed  Google Scholar 

  229. Chan, K. W. E. et al. Ten-year native liver survival rate after laparoscopic and open Kasai portoenterostomy for biliary atresia. J. Laparoendosc. Adv. Surg. Tech. A 29, 121–125 (2019).

    Article  PubMed  Google Scholar 

  230. de Vries, W. et al. Biliary atresia in the Netherlands: outcome of patients diagnosed between 1987 and 2008. J. Pediatr. 160, 638–644.e2 (2012).

    Article  PubMed  Google Scholar 

  231. Madadi-Sanjani, O. et al. Centralization of biliary atresia: has germany learned its lessons. Eur. J. Pediatr. Surg. 32, 233–239 (2022).

    Article  PubMed  Google Scholar 

  232. Al-Hussaini, A. et al. The epidemiology and outcome of biliary atresia: Saudi Arabian National Study (2000-2018). Front. Pediatr. 10, 921948 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Schreiber, R. A., Barker, C. C., Roberts, E. A., Martin, S. R. & Canadian Pediatric Hepatology Research, G. Biliary atresia in Canada: the effect of centre caseload experience on outcome. J. Pediatr. Gastroenterol. Nutr. 51, 61–65 (2010).

    Article  PubMed  Google Scholar 

  234. Shneider, B. L. et al. Total serum bilirubin within 3 months of hepatoportoenterostomy predicts short-term outcomes in biliary atresia. J. Pediatr. 170, 211–217.e2 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Superina, R. et al. The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival. Ann. Surg. 254, 577–585 (2011).

    Article  PubMed  Google Scholar 

  236. Kelley-Quon, L. I. et al. The need for early Kasai portoenterostomy: a Western Pediatric Surgery Research Consortium study. Pediatr. Surg. Int. 38, 193–199 (2022).

    Article  PubMed  Google Scholar 

  237. Davenport, M. et al. The outcome of a centralization program in biliary atresia: 20 years and beyond. Ann. Surg. https://doi.org/10.1097/SLA.0000000000006273 (2024). Definitive evidence that centralization of surgery leads to improved outcomes.

  238. Yoeli, D. et al. Primary vs. salvage liver transplantation for biliary atresia: a retrospective cohort study. J. Pediatr. Surg. 57, 407–413 (2022).

    Article  PubMed  Google Scholar 

  239. LeeVan, E., Matsuoka, L., Cao, S., Groshen, S. & Alexopoulos, S. Biliary-enteric drainage vs primary liver transplant as initial treatment for children with biliary atresia. JAMA Surg. 154, 26–32 (2019).

    Article  PubMed  Google Scholar 

  240. Davenport, M. & Superina, R. Primary liver transplant in biliary atresia: the case for and against. J. Pediatr. Surg. https://doi.org/10.1016/j.jpedsurg.2024.03.005 (2024).

  241. Hukkinen, M., Pihlajoki, M. & Pakarinen, M. P. Predicting native liver injury and survival in biliary atresia. Semin. Pediatr. Surg. 29, 150943 (2020).

    Article  PubMed  Google Scholar 

  242. Davenport, M. & Grieve, A. Maximizing Kasai portoenterostomy in the treatment of biliary atresia: medical and surgical options. S Afr. Med. J. 102, 865–867 (2012).

    Article  PubMed  Google Scholar 

  243. Sun, S. et al. Low gamma-glutamyl transpeptidase levels at presentation are associated with severity of liver illness and poor outcome in biliary atresia. Front. Pediatr. 10, 956732 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Chi, S. et al. Dynamic analysis of serum MMP-7 and its relationship with disease progression in biliary atresia: a multicenter prospective study. Hepatol. Int. 16, 954–963 (2022).

    Article  PubMed  Google Scholar 

  245. Godbole, N. et al. Liver secretin receptor predicts portoenterostomy outcomes and liver injury in biliary atresia. Sci. Rep. 12, 7233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Godbole, N. et al. Prognostic and pathophysiologic significance of IL-8 (CXCL8) in biliary atresia. J. Clin. Med. 10, 2705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Nyholm, I. et al. Serum FGF19 predicts outcomes of Kasai portoenterostomy in biliary atresia. Hepatology 77, 1263–1273 (2023).

    Article  PubMed  Google Scholar 

  248. Yoshii, D. et al. Ki67 expression at Kasai portoenterostomy as a prognostic factor in patients with biliary atresia. BJS Open. 4, 873–883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lampela, H. et al. National centralization of biliary atresia care to an assigned multidisciplinary team provides high-quality outcomes. Scand. J. Gastroenterol. 47, 99–107 (2012).

    Article  PubMed  Google Scholar 

  250. Tu, C. G., Khurana, S., Couper, R. & Ford, A. W. Kasai hepatoportoenterostomy in South Australia: a case for ‘centralized decentralization’. Anz. J. Surg. 85, 865–868 (2015).

    Article  PubMed  Google Scholar 

  251. Baek, S. H. et al. The epidemiology and etiology of cholangitis after Kasai portoenterostomy in patients with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 70, 171–177 (2020).

    Article  PubMed  Google Scholar 

  252. Wang, P. et al. Severity assessment to guide empiric antibiotic therapy for cholangitis in children after Kasai portoenterostomy: a multicenter prospective randomized control trial in China. Int. J. Surg. 109, 4009–4017 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Alatas, F. S., Lazarus, G., Junaidi, M. C. & Oswari, H. Prophylactic antibiotics to prevent cholangitis in children with biliary atresia after Kasai portoenterostomy: a meta-analysis. J. Pediatr. Gastroenterol. Nutr. 77, 648–654 (2023).

    Article  PubMed  Google Scholar 

  254. Willot, S. et al. Effect of ursodeoxycholic acid on liver function in children after successful surgery for biliary atresia. Pediatrics 122, e1236–e1241 (2008).

    Article  PubMed  Google Scholar 

  255. Davenport, M., Parsons, C., Tizzard, S. & Hadzic, N. Steroids in biliary atresia: single surgeon, single centre, prospective study. J. Hepatol. 59, 1054–1058 (2013).

    Article  CAS  PubMed  Google Scholar 

  256. Lu, X. et al. Effect of adjuvant steroid therapy in type 3 biliary atresia: a single-center, open-label, randomized controlled trial. Ann. Surg. 277, e1200–e1207 (2023). Latest finding that postoperative adjuvant steroid therapy improves bile drainage and native liver survival.

    Article  PubMed  Google Scholar 

  257. Davenport, M. et al. Randomized, double-blind, placebo-controlled trial of corticosteroids after Kasai portoenterostomy for biliary atresia. Hepatology 46, 1821–1827 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Bezerra, J. A. et al. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 311, 1750–1759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Pandurangi, S. et al. Customized postoperative therapy improves bile drainage in biliary atresia: a single center preliminary report. J. Pediatr. Surg. 58, 1483–1488 (2023).

    Article  PubMed  Google Scholar 

  260. Wong, Z. H. & Davenport, M. What happens after Kasai for biliary atresia? A European Multicenter Survey. Eur. J. Pediatr. Surg. 29, 1–6 (2019).

    Article  PubMed  Google Scholar 

  261. Tyraskis, A. & Davenport, M. Steroids after the Kasai procedure for biliary atresia: the effect of age at Kasai portoenterostomy. Pediatr. Surg. Int. 32, 193–200 (2016).

    Article  PubMed  Google Scholar 

  262. Alonso, E. M. et al. Impact of steroid therapy on early growth in infants with biliary atresia: the multicenter Steroids in Biliary Atresia Randomized Trial. J. Pediatr. 202, 179–185.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Mack, C. L. et al. A phase I/IIa trial of intravenous immunoglobulin following portoenterostomy in biliary atresia. J. Pediatr. Gastroenterol. Nutr. 68, 495–501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Fischler, B., Casswall, T. H., Malmborg, P. & Nemeth, A. Ganciclovir treatment in infants with cytomegalovirus infection and cholestasis. J. Pediatr. Gastroenterol. Nutr. 34, 154–157 (2002).

    CAS  PubMed  Google Scholar 

  265. Shah, I. & Bhatnagar, S. Biliary atresia with cytomegalovirus infection and its response to ganciclovir. Trop. Gastroenterol. 35, 56–58 (2014).

    Article  PubMed  Google Scholar 

  266. Parolini, F., Hadzic, N. & Davenport, M. Adjuvant therapy of cytomegalovirus IgM+ve associated biliary atresia: Prima facie evidence of effect. J. Pediatr. Surg. 54, 1941–1945 (2019).

    Article  PubMed  Google Scholar 

  267. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04524390 (2024).

  268. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04336722 (2024).

  269. Jeyaraj, R., Maher, E. R. & Kelly, D. Paediatric research sets new standards for therapy in paediatric and adult cholestasis. Lancet Child Adolesc. Health 8, 75–84 (2024).

    Article  CAS  PubMed  Google Scholar 

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05321524 (2023).

  271. Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  272. Gonzales, E. et al. Efficacy and safety of maralixibat treatment in patients with Alagille syndrome and cholestatic pruritus (ICONIC): a randomised phase 2 study. Lancet 398, 1581–1592 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Baumann, U. et al. Effects of odevixibat on pruritus and bile acids in children with cholestatic liver disease: phase 2 study. Clin. Res. Hepatol. Gastroenterol. 45, 101751 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Tam, P. K. H. et al. Regenerative medicine: postnatal approaches. Lancet Child Adolesc. Health 6, 654–666 (2022). State-of-the art review of the potential applications of regenerative medicine to paediatric disease including biliary atresia.

    Article  CAS  PubMed  Google Scholar 

  275. Afonso, M. B., Marques, V., van Mil, S. W. C. & Rodrigues, C. M. P. Human liver organoids: from generation to applications. Hepatology 79, 1432–1451 (2024).

    Article  PubMed  Google Scholar 

  276. Sharma, S. et al. Bone marrow mononuclear stem cell infusion improves biochemical parameters and scintigraphy in infants with biliary atresia. Pediatr. Surg. Int. 27, 81–89 (2011).

    Article  PubMed  Google Scholar 

  277. Nguyen, T. L. et al. Autologous bone marrow mononuclear cell infusion for liver cirrhosis after the Kasai operation in children with biliary atresia. Stem Cell Res. Ther. 13, 108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Holterman, A. et al. Granulocyte-colony stimulating factor GCSF mobilizes hematopoietic stem cells in Kasai patients with biliary atresia in a phase 1 study and improves short term outcome. J. Pediatr. Surg. 56, 1179–1185 (2021).

    Article  PubMed  Google Scholar 

  279. Sampaziotis, F. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371, 839–846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cross-Najafi, A. A. et al. The long road to develop custom-built livers: current status of 3D liver bioprinting. Transplantation 108, 357–368 (2024).

    Article  CAS  PubMed  Google Scholar 

  281. Sundaram, S. S., Mack, C. L., Feldman, A. G. & Sokol, R. J. Biliary atresia: indications and timing of liver transplantation and optimization of pretransplant care. Liver Transpl. 23, 96–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Jain, V. et al. Prognostic markers at adolescence in patients requiring liver transplantation for biliary atresia in adulthood. J. Hepatol. 71, 71–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Howard, E. R. et al. Survival patterns in biliary atresia and comparison of quality of life of long-term survivors in Japan and England. J. Pediatr. Surg. 36, 892–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  284. Kerola, A. et al. Molecular signature of active fibrogenesis prevails in biliary atresia after successful portoenterostomy. Surgery 162, 548–556 (2017).

    Article  PubMed  Google Scholar 

  285. Kyronlahti, A. et al. Evolving up-regulation of biliary fibrosis-related extracellular matrix molecules after successful portoenterostomy. Hepatol. Commun. 5, 1036–1050 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Sato, K. et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69, 420–430 (2019).

    Article  PubMed  Google Scholar 

  287. Nyholm, I. et al. Deep learning quantification reveals a fundamental prognostic role for ductular reaction in biliary atresia. Hepatol. Commun. 7, e0333 (2023). This paper demonstrates the central prognostic importance of ductular reaction both at the time of KPE and during the postoperative follow-up using a large biopsy material and a neural network model.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Harpavat, S. et al. Serum bile acids as a prognostic biomarker in biliary atresia following Kasai portoenterostomy. Hepatology 77, 862–873 (2023).

    Article  PubMed  Google Scholar 

  289. Venkat, V. et al. Modeling outcomes in children with biliary atresia with native liver after 2 years of age. Hepatol. Commun. 4, 1824–1834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Witt, M. et al. Prognosis of biliary atresia after 2-year survival with native liver: a nationwide cohort analysis. J. Pediatr. Gastroenterol. Nutr. 67, 689–694 (2018).

    Article  PubMed  Google Scholar 

  291. Hukkinen, M. et al. Noninvasive evaluation of liver fibrosis and portal hypertension after successful portoenterostomy for biliary atresia. Hepatol. Commun. 3, 382–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Lykavieris, P. et al. Outcome in adulthood of biliary atresia: a study of 63 patients who survived for over 20 years with their native liver. Hepatology 41, 366–371 (2005). One of the first studies to investigate adulthood outcomes in patients surviving with their native liver.

    Article  PubMed  Google Scholar 

  293. de Vries, W. et al. Twenty-year transplant-free survival rate among patients with biliary atresia. Clin. Gastroenterol. Hepatol. 9, 1086–1091 (2011).

    Article  PubMed  Google Scholar 

  294. Yoon, H. J. et al. Hepatic tumours in children with biliary atresia: single-centre experience in 13 cases and review of the literature. Clin. Radiol. 69, e113–e119 (2014).

    Article  CAS  PubMed  Google Scholar 

  295. Hadzic, N. et al. Hepatocellular carcinoma in biliary atresia: King’s College Hospital experience. J. Pediatr. 159, 617–622.e1 (2011).

    Article  PubMed  Google Scholar 

  296. Joshi, D. et al. The management of childhood liver diseases in adulthood. J. Hepatol. 66, 631–644 (2017).

    Article  PubMed  Google Scholar 

  297. Bass, L. M. et al. Risk of variceal hemorrhage and pretransplant mortality in children with biliary atresia. Hepatology 76, 712–726 (2022). This study addresses the risk of variceal bleeding and associated mortality in two large cohorts of paediatric patients surviving with their native liver.

    Article  CAS  PubMed  Google Scholar 

  298. Lampela, H., Hukkinen, M., Kosola, S., Jahnukainen, T. & Pakarinen, M. P. Poor performance of noninvasive predictors of esophageal varices during primary prophylaxis surveillance in biliary atresia. J. Pediatr. Surg. 55, 2662–2667 (2020).

    Article  PubMed  Google Scholar 

  299. Ng, V. L. et al. Medical status of 219 children with biliary atresia surviving long-term with their native livers: results from a North American multicenter consortium. J. Pediatr. 165, 539–546.e2 (2014). A benchmark study for long-term health outcomes in children with biliary atresia surviving with their native liver.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Sadiq, J. et al. Long-term clinical and socioeconomic outcomes of children with biliary atresia. JGH Open. 7, 841–847 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Bijl, E. J., Bharwani, K. D., Houwen, R. H. & de Man, R. A. The long-term outcome of the Kasai operation in patients with biliary atresia: a systematic review. Neth. J. Med. 71, 170–173 (2013).

    CAS  PubMed  Google Scholar 

  302. Duche, M. et al. Experience with endoscopic management of high-risk gastroesophageal varices, with and without bleeding, in children with biliary atresia. Gastroenterology 145, 801–807 (2013).

    Article  PubMed  Google Scholar 

  303. Samyn, M. Transitional care of biliary atresia. Semin. Pediatr. Surg. 29, 150948 (2020).

    Article  PubMed  Google Scholar 

  304. Karrer, F. M., Wallace, B. J. & Estrada, A. E. Late complications of biliary atresia: hepatopulmonary syndrome and portopulmonary hypertension. Pediatr. Surg. Int. 33, 1335–1340 (2017).

    Article  PubMed  Google Scholar 

  305. Matcovici, M., Stoica, I., Smith, K. & Davenport, M. What makes a “successful” Kasai portoenterostomy “unsuccessful”? J. Pediatr. Gastroenterol. Nutr. 76, 66–71 (2023).

    Article  CAS  PubMed  Google Scholar 

  306. Ginstrom, D. A., Hukkinen, M., Kivisaari, R. & Pakarinen, M. P. Biliary atresia-associated cholangitis: the central role and effective management of bile lakes. J. Pediatr. Gastroenterol. Nutr. 68, 488–494 (2019).

    Article  PubMed  Google Scholar 

  307. Calinescu, A. M. et al. Cholangitis definition and treatment after Kasai hepatoportoenterostomy for biliary atresia: a Delphi process and international expert panel. J. Clin. Med. 11, 494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Ruuska, S. et al. Impaired bone health in children with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 71, 707–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  309. Ng, V. L. et al. Neurodevelopmental outcome of young children with biliary atresia and native liver: results from the ChiLDReN study. J. Pediatr. 196, e133 (2018).

    Article  Google Scholar 

  310. Squires, J. E. et al. Neurodevelopmental outcomes in preschool and school aged children with biliary atresia and their native liver. J. Pediatr. Gastroenterol. Nutr. 70, 79–86 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Ruuska, S. et al. Neurocognitive and motor functions in biliary atresia patients: a cross-sectional, prospective national cohort study. J. Pediatr. Gastroenterol. Nutr. 73, 491–498 (2021).

    Article  CAS  PubMed  Google Scholar 

  312. Rodijk, L. H. et al. Long-term neurodevelopmental outcomes in children with biliary atresia. J. Pediatr. 217, 118–124.e3 (2020).

    Article  PubMed  Google Scholar 

  313. Sundaram, S. S. et al. Health related quality of life in patients with biliary atresia surviving with their native liver. J. Pediatr. 163, 1052–1057.e2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  314. de Vries, W. et al. Overall quality of life in adult biliary atresia survivors with or without liver transplantation: results from a national cohort. Eur. J. Pediatr. Surg. 26, e1 (2016).

    PubMed  Google Scholar 

  315. Wong, C. W. Y., Chung, P. H. Y., Tam, P. K. H. & Wong, K. K. Y. Long-term results and quality of life assessment in biliary atresia patients: a 35-year experience in a tertiary hospital. J. Pediatr. Gastroenterol. Nutr. 66, 570–574 (2018).

    Article  PubMed  Google Scholar 

  316. Hukkinen, M., Ruuska, S., Pihlajoki, M., Kyronlahti, A. & Pakarinen, M. P. Long-term outcomes of biliary atresia patients surviving with their native livers. Best. Pract. Res. Clin. Gastroenterol. 56-57, 101764 (2022).

    Article  PubMed  Google Scholar 

  317. Cui, M. M. et al. Contribution of ADD3 and the HLA genes to biliary atresia risk in Chinese. Int. J. Mol. Sci. 24, 14719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zeng, S. et al. Association between single nucleotide polymorphisms in the ADD3 gene and susceptibility to biliary atresia. PLoS ONE 9, e107977 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Kaewkiattiyot, S., Honsawek, S., Vejchapipat, P., Chongsrisawat, V. & Poovorawan, Y. Association of X-prolyl aminopeptidase 1 rs17095355 polymorphism with biliary atresia in Thai children. Hepatol. Res. 41, 1249–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  320. Chung, P. H. Y., Wong, K. K. Y. & Tam, P. K. H. Standard management protocol to improve the short-term outcome of biliary atresia. J. Paediatr. Child Health 56, 1774–1778 (2020).

  321. La Pergola, E., Zen, Y. & Davenport, M. Developmental histology of the portal plate in biliary atresia: observations and implications. Pediatr. Surg. Int. 37, 715–721 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.K.H.T., C.S.M.T. and V.C.H.L. disclose funding support for the research for this work from the Theme-based Research Scheme (T12-712/21-R), CERG (17105119), HMRF (09201836) and Commissioned HMRF (PR-HKU-1) from the Hong Kong SAR Government; P.K.H.T. was also supported by Macau FDCT0011/2023/AKP. R.G.W. was supported by NIH R01 DK119290 and the Children’s Hospital of Philadelphia-Fred and Suzanne Biesecker Paediatric Liver Center.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.K.H.T.); Epidemiology (P.K.H.T. and M.H.); Mechanisms/pathophysiology (P.K.H.T., C.S.M.T., V.C.H.L., C.L.M. and R.G.W.); Diagnosis, screening and prevention (P.K.H.T., M.D., C.D.L. and M.P.); Management (P.K.H.T., M.D., P.D.C. and M.P.); Quality of life (P.K.H.T. and M.P.); Outlook (P.K.H.T. and P.D.C.); overview of the Primer (P.K.H.T.).

Corresponding author

Correspondence to Paul K. H. Tam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks D. A. Kelly; A. Miethke, who co-reviewed with A. Russi; H. Verkade; and A. Yamataka for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, P.K.H., Wells, R.G., Tang, C.S.M. et al. Biliary atresia. Nat Rev Dis Primers 10, 47 (2024). https://doi.org/10.1038/s41572-024-00533-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00533-x

  • Springer Nature Limited

Navigation