Skip to main content

Advertisement

Log in

Pulmonary hypertension

  • Primer
  • Published:

From Nature Reviews Disease Primers

View current issue Sign up to alerts

A Publisher Correction to this article was published on 17 January 2024

This article has been updated

Abstract

Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world’s population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Diverse profile of pulmonary hypertension and pulmonary arterial hypertension across regions of the world.
Fig. 2: Molecular mechanisms in pulmonary arterial hypertension.
Fig. 3: Current pulmonary arterial hypertension therapies.

Similar content being viewed by others

Change history

References

  1. Humbert, M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 61, 2200879 (2023).

    Article  PubMed  Google Scholar 

  2. Ruopp, N. F. & Cockrill, B. A. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA 327, 1379–1391 (2022). erratum 328, 892 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Humbert, M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl. 25), D34–D41 (2013); erratum 63, 746 (2014).

  5. Mocumbi, A. O. et al. A global perspective on the epidemiology of pulmonary hypertension. Can. J. Cardiol. 31, 375–381 (2015).

    Article  PubMed  Google Scholar 

  6. Rich, S. et al. Pulmonary hypertension: the unaddressed global health burden. Lancet Respir. Med. 6, 577–579 (2018).

    Article  PubMed  Google Scholar 

  7. Thienemann, F. et al. The causes, treatment, and outcome of pulmonary hypertension in Africa: insights from the Pan African Pulmonary Hypertension Cohort (PAPUCO) registry. Int. J. Cardiol. 221, 205–211 (2016).

    Article  PubMed  Google Scholar 

  8. Harikrishnan, S. et al. Pulmonary hypertension registry of Kerala, India (PRO-KERALA) – clinical characteristics and practice patterns. Int. J. Cardiol. 265, 212–217 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Stewart, S. et al. A not-so-rare form of heart failure in urban black Africans: pathways to right heart failure in the Heart of Soweto Study cohort. Eur. J. Heart Fail. 13, 1070–1077 (2011).

    Article  PubMed  Google Scholar 

  10. Khou, V. et al. Diagnostic delay in pulmonary arterial hypertension, insights from the Australian and New Zealand pulmonary hypertension registry. Respirology 25, 863–871 (2020).

    Article  PubMed  Google Scholar 

  11. Levine, D. J. Pulmonary arterial hypertension: updates in epidemiology and evaluation of patients. Am. J. Manag. Care 27, S35–S41 (2021).

    Article  PubMed  Google Scholar 

  12. Emmons-Bell, S. et al. Prevalence, incidence, and survival of pulmonary arterial hypertension: a systematic review for the Global Burden of Disease 2020 Study. Pulm. Circ. 12, e12020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corris, P. A. & Seeger, W. Call it by the correct name – pulmonary hypertension not pulmonary arterial hypertension: growing recognition of the global health impact for a well-recognized condition and the role of the Pulmonary Vascular Research Institute. Am. J. Physiol. Lung Cell Mol. Physiol. 318, L992–L994 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Mocumbi, A. et al. Pulmonary vascular disease in Africa: lessons from registries. Glob. Cardiol. Sci. Pr. 2020, e202002 (2020).

    Google Scholar 

  15. Humbert, M. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

    Article  PubMed  Google Scholar 

  16. Peacock, A. J. et al. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 30, 104–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Haji, K. et al. Pulmonary hypertension in Central Australia: a community-based cohort study. Heart Lung Circ. 28, 598–604 (2019).

    Article  PubMed  Google Scholar 

  18. Strange, G. et al. Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart 8, 1805–1811 (2012).

    Article  Google Scholar 

  19. Wijeratne, D. T. et al. Increasing incidence and prevalence of World Health Organization groups 1 to 4 pulmonary hypertension: a population-based cohort study in Ontario, Canada. Circ. Cardiovasc. Qual. Outcomes 11, e003973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  21. Sinha, A. et al. Heart failure with preserved ejection fraction and obesity: syndrome of cGMP-PKG deficiency in post-menopausal women. JACC Case Rep. 2, 28–32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Keogh, A. et al. Survival after the initiation of combination therapy in patients with pulmonary arterial hypertension: an Australian collaborative report. Intern. Med. J. 41, 235–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Strange, G. et al. Threshold of pulmonary hypertension associated with increased mortality. J. Am. Coll. Cardiol. 73, 2660–2672 (2019).

    Article  PubMed  Google Scholar 

  24. Maron, B. A. et al. Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 133, 1240–1248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kolte, D. et al. Mild pulmonary hypertension is associated with increased mortality: a systematic review and meta-analysis. J. Am. Heart Assoc. 7, e009729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stewart, S. et al. Mild pulmonary hypertension and premature mortality among 154 956 men and women undergoing routine echocardiography. Eur. Respir. J. 59, 2100832 (2022).

    Article  PubMed  Google Scholar 

  27. Harikrishnan, S. et al. Pulmonary hypertension registry of Kerala, India (PRO-KERALA): one-year outcomes. Indian Heart J. 74, 34–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Strange, G. et al. Survival of idiopathic pulmonary arterial hypertension patients in the modern era in Australia and New Zealand. Heart Lung Circ. 27, 1368–1375 (2018).

    Article  PubMed  Google Scholar 

  29. Playford, D. et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA). Eur. Respir. J. Cardiovasc. Imaging 22, 505–515 (2021).

    Article  Google Scholar 

  30. van Loon, R. L. E. et al. Pediatric pulmonary hypertension in the Netherlands: epidemiology and characterization during the period 1991 to 2005. Circulation 124, 1755–1764 (2011).

    Article  PubMed  Google Scholar 

  31. Del Cerro Marin, M. J. et al. Assessing pulmonary hypertensive vascular disease in childhood, data from the Spanish registry. Am. J. Respir. Crit. Care. Med. 190, 1421–1429 (2014).

    Article  PubMed  Google Scholar 

  32. Moledina, S., Hislop, A. A., Foster, H., Schultze-Neick, I. & Haworth, S. G. Childhood idiopathic pulmonary arterial hypertension: a national cohort study. Heart 96, 1401–1406 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Kwiatkowska, J. et al. Children and adolescents with pulmonary arterial hypertension: baseline and follow-up data from the Polish Registry of Pulmonary Hypertension (BNP-PL). J. Clin. Med. 9, 1717 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Constantine, A. et al. Twenty-year experience and outcomes in a national pediatric pulmonary hypertension service. Am. J. Respir. Crit. Care. Med. 206, 758–766 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mocumbi, A. O. et al. Challenges on the management of congenital heart disease in developing countries. Int. J. Cardiol. 148, 285–288 (2011).

    Article  PubMed  Google Scholar 

  36. Abman, S. H. et al. Characterisation of paediatric pulmonary hypertensive vascular disease from the PPHNet Registry. Eur. Respir. J. 59, 2003337 (2022).

    Article  PubMed  Google Scholar 

  37. Li, L. et al. Pulmonary arterial hypertension in the USA: an epidemiological study in a large insured pediatric population. Pulm. Circ. 7, 126–136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Levy, M. et al. Genetic analyses in a cohort of children with pulmonary hypertension. Eur. Respir. J. 48, 1118–1126 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Berger, R. M. et al. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet 379, 537–546 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barst, R. J. et al. Survival in childhood pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management. Circulation 125, 113–122 (2012).

    Article  PubMed  Google Scholar 

  41. Haworth, S. G. et al. Treatment and survival in children with pulmonary arterial hypertension: the UK Pulmonary Hypertension Service for Children 2001–2006. Heart 95, 312–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Evans, C. E. et al. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 58, 2003957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, K.-H. et al. Epigenetic dysregulation of the dynamin-related protein 1 binding partners MiD49 and MiD51 increases mitotic mitochondrial fission and promotes pulmonary arterial hypertension, mechanistic and therapeutic implications. Circulation 138, 287–304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geraci, M. W. et al. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ. Res. 88, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Voelkel, N. F. et al. Primary pulmonary hypertension between inflammation and cancer. Chest 114, 225S–230S (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Archer, S. L. et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 294, H570–H578 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Archer, S. L. et al. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121, 2045–2066 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thenappan, T. et al. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ 360, j5492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hong, J. et al. Single-cell study of two rat models of pulmonary arterial hypertension reveals connections to human pathobiology and drug repositioning. Am. J. Respir. Crit. Care Med. 203, 1006–1022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Potus, F. et al. Transcriptomic signature of right ventricular failure in experimental pulmonary arterial hypertension: deep sequencing demonstrates mitochondrial, fibrotic, inflammatory and angiogenic abnormalities. Int. J. Mol. Sci. 19, 2730 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boucherat, O. et al. Identification of LTBP-2 as a plasma biomarker for right ventricular dysfunction in human pulmonary arterial hypertension. Nat. Cardiovasc. Res. 1, 748–760 (2022).

    Article  Google Scholar 

  52. Zhu, N. et al. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med. 13, 80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lane, K. B. et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Eichstaedt, C. A. et al. Genetic counselling and testing in pulmonary arterial hypertension: a consensus statement on behalf of the International Consortium for Genetic Studies in PAH. Eur. Respir. J. 61, 2201471 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Best, D. H. et al. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. Chest 145, 231–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Montani, D. G. et al. Screening for pulmonary arterial hypertension in adults carrying a BMPR2 mutation. Eur. Respir. J 58, 2004229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Humbert, M. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 384, 1204–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, G. H. et al. Epigenetic mechanisms of pulmonary hypertension. Pulm. Circ. 1, 347–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonnet, S. et al. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am. J. Physiol. Cell Physiol. 318, C1–C28 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Negi, V. & Chan, S. Y. Discerning functional hierarchies of microRNAs in pulmonary hypertension. JCI Insight 2, e91327 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Potus, F. et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132, 932–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. McMurtry, M. S. et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95, 830–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Archer, S. L. et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121, 2661–2671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Potus, F. et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141, 1986–2000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hindmarch C. C. T. et al. Humans with pulmonary arterial hypertension display a global hypermethylation signature that worsens in patients who have a mutation in the gene encoding the methylation eraser, Tet methylcytosine dioxygenase 2 (TET2). Preprint at medRxiv https://doi.org/10.1101/2023.08.09.23293846 (2023).

  67. de Frutos, S. et al. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with α-actin up-regulation. J. Biol. Chem. 282, 15081–15089 (2007).

    Article  PubMed  Google Scholar 

  68. Bonnet, S. et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc. Natl Acad. Sci. USA 104, 11418–11423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. He, R. L. et al. Calcineurin/NFAT signaling modulates pulmonary artery smooth muscle cell proliferation, migration and apoptosis in monocrotaline-induced pulmonary arterial hypertension rats. Cell Physiol. Biochem. 49, 172–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Bertero, T. et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J. Clin. Invest. 124, 3514–3528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, J. et al. MicroRNA-483 amelioration of experimental pulmonary hypertension. EMBO Mol. Med. 12, e11303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu, L. et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am. J. Respir. Crit. Care Med. 203, 1158–1172 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Qin, Y. et al. The m6A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci. 274, 119366 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Zeng, Y. et al. Integrated analysis of m6A mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension. Aging 13, 18238–18256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, L. et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126, 455–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McMurtry, M. S. et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J. Clin. Invest. 115, 1479–1491 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nozik-Grayck, E. et al. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L124–L134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sutendra, G. & Michelakis, E. D. The metabolic basis of pulmonary arterial hypertension. Cell Metab. 19, 558–573 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 287 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Marsboom, G. et al. Lung 18F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 185, 670–679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, L. et al. Heterogeneity in lung 18FDG uptake in pulmonary arterial hypertension: potential of dynamic 18FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128, 1214–1224 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Oikawa, M. et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J. Am. Coll. Cardiol. 45, 1849–1855 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Prisco, S. Z. et al. Excess protein O-GlcNAcylation links metabolic derangements to right ventricular dysfunction in pulmonary arterial hypertension. Int. J. Mol. Sci. 21, 7278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piao, L. et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J. Mol. Med. 91, 333–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Dai, Z. et al. Prolyl-4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2α. Circulation 133, 2447–2458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, B. et al. Endothelial PHD2 deficiency induces nitrative stress via suppression of caveolin-1 in pulmonary hypertension. Eur. Respir. J. 60, 2102643 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Michelakis, E. D. et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9, eaao4583 (2017).

    Article  PubMed  Google Scholar 

  88. Caruso, P. et al. Identification of microRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation 136, 2451–2467 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, H. et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation 136, 2468–2485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Randle, P. J. et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  91. Fang, Y. H. et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy, exploiting Randle’s cycle. J. Mol. Med. 90, 31–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Khan, S. S. et al. Effects of ranolazine on exercise capacity, right ventricular indices, and hemodynamic characteristics in pulmonary arterial hypertension: a pilot study. Pulm. Circ. 5, 547–556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, M. H. et al. Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 323, L355–L371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brittain, E. L. et al. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension. Circulation 133, 1936–1944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Piao, L. et al. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J. Mol. Med. 91, 1185–1197 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Lacey, J. M. & Wilmore, D. W. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48, 297–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Acharya, A. P. et al. Simultaneous pharmacologic inhibition of yes-associated protein 1 and glutaminase 1 via inhaled poly(lactic-co-glycolic) acid-encapsulated microparticles improves pulmonary hypertension. J. Am. Heart Assoc. 10, e019091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bertero, T. et al. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Invest. 126, 3313–3335 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Archer, S. L. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Marsboom, G. et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ. Res 110, 1484–1497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rehman, J. et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26, 2175–2186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ryan, J. J. et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 187, 865–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Becker, M. O. et al. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am. J. Respir. Crit. Care Med. 190, 808–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Qiu, H. et al. The role of regulatory T cells in pulmonary arterial hypertension. J. Am. Heart Assoc. 8, e014201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liu, Y. et al. Regulatory T cell-related gene indicators in pulmonary hypertension. Front. Pharmacol. 13, 908783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tian, W. et al. The role of regulatory T cells in pulmonary arterial hypertension. Front. Immunol. 12, 684657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Al-Qazazi, R. et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 206, 608–624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tian, W. et al. Blocking macrophage leukotriene B4 prevents endothelial injury and reverses pulmonary hypertension. Sci. Transl. Med. 5, 200ra117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ormiston, M. L. et al. Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension. Circulation 126, 1099–1109 (2012).

    Article  PubMed  Google Scholar 

  110. Weir, E. K. et al. Acute oxygen-sensing mechanisms. N. Engl. J. Med. 353, 2042–2055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yuan, X. J. et al. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351, 726–727 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Weir, E. K. & Archer, S. L. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 9, 183–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Archer, S. L. et al. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 101, 2319–2330 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Platoshyn, O. et al. Chronic hypoxia decreases KV channel expression and function in pulmonary artery myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L801–L812 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Pozeg, Z. I. et al. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107, 2037–2044 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Dabrowska, R. et al. Composition of the myosin light chain kinase from chicken gizzard. Biochem. Biophys. Res. Commun. 78, 1263–1272 (1977).

    Article  CAS  PubMed  Google Scholar 

  117. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Ma, L. et al. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 369, 351–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yuan, J. X. et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98, 1400–1406 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Burg, E. D. et al. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br. J. Pharmacol. 153, S99–S111 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Sitbon, O. et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111, 3105–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Montani, D. et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur. Respir. J. 31, 1898–1907 (2010).

    CAS  Google Scholar 

  123. Sankhe, S. et al. T-type Ca2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. Biochim. Biophys. Acta Mol. Cell. Res. 1864, 1631–1641 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Masson, B. et al. Role of store-operated Ca2+ entry in the pulmonary vascular remodeling occurring in pulmonary arterial hypertension. Biomolecules 11, 1781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Song, S. et al. STIM2 (stromal interaction molecule 2)-mediated increase in resting cytosolic free Ca2+ concentration stimulates PASMC proliferation in pulmonary arterial hypertension. Hypertension 71, 518–529 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Hadri, L. et al. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation 128, 512–523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baradaran, R. et al. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature 559, 580–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hong, Z. et al. MicroRNA-138 and microRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am. J. Respir. Crit. Care Med. 195, 515–529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McCormack, J. G. & Denton, R. M. The role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in mammalian tissues. Biochem. Soc. Trans. 21, 793–799 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Guilluy, C. et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am. J. Respir. Crit. Care Med. 179, 1151–1158 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Jiang, R. et al. Intravenous fasudil improves in-hospital mortality of patients with right heart failure in severe pulmonary hypertension. Hypertens. Res. 38, 539–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Nootens, M. et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J. Am. Coll. Cardiol. 26, 1581–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Piao, L. et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation 126, 2859–2869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bristow, M. R. et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J. Clin. Invest. 89, 803–815 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Thenappan, T., Weir, E. K., Prins, K. W., Pritzker, M. R. & Archer, S. L. Carvedilol for treatment of right ventricular dysfunction in pulmonary arterial hypertension. J. Am. Heart Assoc. 10, e021518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vonk Noordegraaf, A. & Galliè, N. The role of the right ventricle in pulmonary arterial hypertension. Eur. Respir. Rev. 20, 243–253 (2011).

    Article  Google Scholar 

  137. Ryan, J. J. et al. Right ventricular adaptation and failure in pulmonary arterial hypertension. Can. J. Cardiol. 31, 391–406 (2015).

    Article  PubMed  Google Scholar 

  138. Overbeek, M. J. et al. Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur. Respir. J. 31, 1160–1166 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Hopkins, W. E. et al. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J. Heart Lung Transpl. 15, 100–105 (1996).

    CAS  Google Scholar 

  140. Jacobs, W. et al. The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest 145, 1230–1236 (2014).

    Article  PubMed  Google Scholar 

  141. Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL). Circulation 122, 164–172 (2010).

    Article  PubMed  Google Scholar 

  142. Humbert, M. et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122, 156–163 (2020).

    Article  Google Scholar 

  143. Shehata, M. L. et al. Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am. J. Roentgenol. 196, 87–94 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tian, L. et al. Supra-coronary aortic banding improves right ventricular function in experimental pulmonary arterial hypertension in rats by increasing systolic right coronary artery perfusion. Acta Physiol. 229, e13483 (2020).

    Article  CAS  Google Scholar 

  145. Tian, L. et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J. Mol. Med. 95, 381–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Tian, L. et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: a pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis. Circ. Res. 126, 1723–1745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, D. et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ. Res. 114, 67–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Prins, K. W. et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J. Heart Lung Transpl. 37, 376–384 (2018).

    Article  Google Scholar 

  149. Piao, L. et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J. Mol. Med. 88, 47–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Bonnet, S. et al. An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113, 2630–2641 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Michelakis, E. D. et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105, 244–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Prins, K. W. et al. Colchicine depolymerizes microtubules, increases junctophilin-2, and improves right ventricular function in experimental pulmonary arterial hypertension. J. Am. Heart Assoc. 6, e006195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bogaard, H. J. et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182, 652–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Graham, B. B. et al. Vascular adaptation of the right ventricle in experimental pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 59, 479–489 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vizza, C. D. et al. Aggressive afterload lowering to improve the right ventricle: a new target for medical therapy in pulmonary arterial hypertension? Am. J. Respir. Crit. Care Med. 205, 751–760 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Chen, X. et al. 10-year survival of pulmonary arterial hypertension associated with connective tissue disease: insights from a multicentre PAH registry. Rheumatology 62, 3555–3564 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Swinnen, K. et al. Learning from registries in pulmonary arterial hypertension: pitfalls and recommendations. Eur. Respir. Rev. 28, 190050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Idrees, M. et al. Pulmonary hypertension in the developing world: local registries, challenges, and ways to move forward. Glob. Cardiol. Sci. Pract. 2020, e202014 (2020).

    PubMed  PubMed Central  Google Scholar 

  159. Kubota, K. et al. Association of delayed diagnosis of pulmonary arterial hypertension with its prognosis. J. Cardiol. https://doi.org/10.1016/j.jjcc.2023.08.004 (2023).

    Article  PubMed  Google Scholar 

  160. Valverde, A. B. et al. Pulmonary arterial hypertension in Latin America: epidemiological data from local studies. BMC Pulm. Med. 18, 106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gladue, H. et al. Combination of echocardiographic and pulmonary function test measures improves sensitivity for diagnosis of systemic sclerosis-associated pulmonary arterial hypertension: analysis of 2 cohorts. J. Rheumatol. 40, 1706–1711 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ishii, S. et al. Prognostic value of follow-up vasoreactivity test in pulmonary arterial hypertension. J. Cardiol. 82, 69–75 (2023).

    Article  PubMed  Google Scholar 

  163. Engelke, C. et al. High-resolution CT and CT angiography of peripheral pulmonary vascular disorders. Radiographics 22, 739–764 (2002).

    Article  PubMed  Google Scholar 

  164. Rajaram, S. et al. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE Registry. Thorax 70, 382–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Liu, Y. C. et al. Long-term study on therapeutic strategy for treatment of Eisenmenger syndrome patients: a case series study. Children 9, 1217 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Berman, E. B. & Barst, R. J. Eisenmenger’s syndrome: current management. Prog. Cardiovasc. Dis. 45, 129–138 (2002).

    Article  PubMed  Google Scholar 

  167. Douwes, J. M. et al. Six-minute walking distance and decrease in oxygen saturation during the six-minute walk test in pediatric pulmonary arterial hypertension. Int. J. Cardiol. 202, 34–39 (2016).

    Article  PubMed  Google Scholar 

  168. Ploegstra, M. J. et al. Prognostic factors in pediatric pulmonary arterial hypertension: a systematic review and meta-analysis. Int. J. Cardiol. 184, 198–207 (2015).

    Article  PubMed  Google Scholar 

  169. Bobhate, P. et al. Cardiac catheterization in children with pulmonary hypertensive vascular disease. Pediatr. Cardiol. 36, 873–879 (2015).

    Article  PubMed  Google Scholar 

  170. O’Byrne, M. L. et al. Predictors of catastrophic adverse outcomes in children with pulmonary hypertension undergoing cardiac catheterization: a multi-institutional analysis from the Pediatric Health Information Systems Database. J. Am. Coll. Cardiol. 66, 1261–1269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Grynblat, J. et al. Monitoring of hemodynamics with right heart catheterization in children with pulmonary arterial hypertension. J. Am. Heart Assoc. 12, e029085 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Hasan, B. S. et al. Recommendations for developing effective and safe paediatric and congenital heart disease services in low-income and middle-income countries: a public health framework. BMJ Glob. Health 8, e012049 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dzudie, A. et al. A diagnostic algorithm for pulmonary hypertension due to left heart disease in resource-limited settings: can busy clinicians adopt a simple, practical approach? Cardiovasc. J. Afr. 30, 61–67 (2019).

    Article  PubMed  Google Scholar 

  174. Lammers, A. E. et al. The 6-minute walk test: normal values for children of 4-11 years of age. Arch. Dis. Child. 93, 464–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Stewart, S. et al. Clinical algorithm to screen for cardiopulmonary disease in low-income settings. Nat. Rev. Cardiol. 16, 639–641 (2019).

    Article  PubMed  Google Scholar 

  176. Vaduganathan, M. et al. The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol. 80, 2361–2371 (2022).

    Article  PubMed  Google Scholar 

  177. Noubiap, J. J. et al. Targeting household air pollution for curbing the cardiovascular disease burden: a health priority in sub-Saharan Africa. J. Clin. Hypertens. 17, 825–829 (2015).

    Article  Google Scholar 

  178. Hu, G. & Ran, P. Indoor air pollution as a lung health hazard: focus on populous countries. Curr. Opin. Pulm. Med. 15, 158–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Sliwa, K. et al. Hypertension: a global perspective. Circulation 123, 2892–2896 (2011).

    Article  PubMed  Google Scholar 

  180. Mocumbi, A. O. et al. Cardiovascular effects of indoor air pollution from solid fuel: relevance to sub-Saharan Africa. Curr. Environ. Health Rep. 6, 116–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Namuyonga, J. & Mocumbi, A. O. Pulmonary hypertension in children across Africa, the silent threat. Int. J. Pediatr. 2021, 9998070 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Patel, R. et al. Treatment of pulmonary hypertension. Med. Sci. Monit. 18, RA31–RA39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tanvirul, H. et al. Emerging biologics for the treatment of pulmonary arterial hypertension. J. Drug Target. 31, 471–485 (2023).

    Article  Google Scholar 

  184. Hoeper, M. M. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 388, 1478–1490 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Gaine, S. & McLaughlin, V. Pulmonary arterial hypertension: tailoring treatment to risk in the current era. Eur. Respir. Rev. 26, 170095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Toma, M. et al. Left heart disease phenotype in elderly patients with pulmonary arterial hypertension: insights from the Italian PATRIARCA registry. J. Clin. Med. 11, 7136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hoeper, M. M. et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir. Med. 10, 937–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Purvey, M. & Allen, G. Managing acute pulmonary oedema. Aust. Prescr. 40, 59–63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sugarman, J. & Weatherald, J. Management of pulmonary hypertension due to chronic lung disease. Methodist Debakey Cardiovasc. J. 17, 124–133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Chaouat, R. & Naeije, E. W. Pulmonary hypertension in COPD. Eur. Respir. J. 32, 1371–1385 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Nathan, S. D. et al. Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): a randomised, placebo-controlled phase 2b study. Lancet Respir. Med. 7, 780–790 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Barnes, H., Brown, Z., Burns, A. & Williams, T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst. Rev. 1, CD012621 (2019).

    PubMed  Google Scholar 

  193. Waxman, A. et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N. Engl. J. Med. 384, 325–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Delcroix, M. et al. ERS statement on chronic thromboembolicpulmonary hypertension. Eur. Respir. J. 57, 2002828 (2021).

    Article  PubMed  Google Scholar 

  195. European Lung Foundation. Diagnosing and treating pulmonary hypertension: understanding the professional guidelines. European Lung Foundation https://europeanlung.org/wp-content/uploads/2022/09/Diagnosing-and-treating-PH-Understanding-the-professional-guidelines-EN.pdf (2023).

  196. David, J. et al. Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 26, 160111 (2007).

    Google Scholar 

  197. Olschewski, H. et al. Aerosolized Iloprost Randomized Study Group. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. European Medicines Agency. Annex 1: Summary of product characteristics. Trepulmix. EMA https://www.ema.europa.eu/en/documents/product-information/trepulmix-epar-product-information_en.pdf (2020).

  199. Wiedenroth, C. B. et al. Complications of balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension: impact on the outcome. J. Heart Lung Transpl. 41, 1086–1094 (2022).

    Article  Google Scholar 

  200. Gien, J. & Kinsella, J. P. Management of pulmonary hypertension in infants with congenital diaphragmatic hernia. J. Perinatol. 36, S28–S31 (2016).

    Article  PubMed  Google Scholar 

  201. Alkon, J. et al. Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am. J. Cardiol. 106, 430–436 (2010).

    Article  PubMed  Google Scholar 

  202. Mullen, M. P. et al. Quality of life and parental adjustment in pediatric pulmonary hypertension. Chest 145, 237–244 (2014).

    Article  PubMed  Google Scholar 

  203. Strange, G. et al. Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: the Delay study. Pulm. Circ. 3, 89–94 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Brown, L. M. et al. Delay in recognition of pulmonary arterial hypertension: factors identified from the REVEAL Registry. Chest 140, 19–26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Rich, S. et al. Primary pulmonary hypertension. A national prospective study. Ann. Intern. Med. 107, 216–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  206. Strange, G. et al. Pulmonary hypertension and breathlessness: is it a combination we can ignore? Intern. Med. J. 44, 114–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Arogundade, F. et al. The MRC Dyspnoea Scale and mortality risk prediction in pulmonary arterial hypertension: a retrospective longitudinal cohort study. Pulm. Circ. 13, e12257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sarzynska, K. et al. Quality of life of patients with pulmonary arterial hypertension: a meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 25, 4983–4998 (2021).

    CAS  PubMed  Google Scholar 

  209. Stewart, S. et al. The challenge of an expanded therapeutic window in pulmonary hypertension. Nat. Rev. Cardiol. 17, 195–197 (2020).

    Article  PubMed  Google Scholar 

  210. McKenna, S. P. et al. The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR): a measure of health-related quality of life and quality of life for patients with pulmonary hypertension. Qual. Life Res 15, 103–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Zhang, H. et al. Long-term mortality after pulmonary artery denervation stratified by baseline functional class in patients with pulmonary arterial hypertension: long-term mortality after PADN stratified by functional class. AsiaIntervention 8, 58–68 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gupta, R. et al. The six-minute walk test in sarcoidosis associated pulmonary hypertension: results from an international registry. Respir. Med. 196, 106801 (2022).

    Article  PubMed  Google Scholar 

  213. Varni, J. W. et al. The PedsQL: measurement model for the pediatric quality of life inventory. Med. Care 37, 126–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  214. Shah, A. J. et al. Molecular pathways in pulmonary arterial hypertension. Int. J. Mol. Sci. 23, 10001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Louw, E. et al. The prevalence of pulmonary hypertension after successful tuberculosis treatment in a community sample of adult patients. Pulm. Circ. 13, e12184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mocumbi, A. O. et al. A population study of endomyocardial fibrosis in a rural area of Mozambique. N. Engl. J. Med. 359, 43–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Weatherald, J. et al. Priorities for pulmonary hypertension research: a James Lind Alliance priority setting partnership. J. Heart Lung Transpl. 42, 1–6 (2023).

    Article  Google Scholar 

  218. Papamatheakis, D. G. et al. Schistosomiasis-associated pulmonary hypertension. Pulm. Circ. 4, 596–611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Menghistu, H. T. et al. Neglected tropical zoonotic diseases in Tigray region, northern Ethiopia: spatial distribution and trend analysis of rabies, tuberculosis, schistosomiasis, and visceral leishmaniasis in humans. Zoonoses Public Health 68, 823–833 (2021).

    Article  PubMed  Google Scholar 

  220. World Health Organization. Global tuberculosis report 2021. WHO https://www.who.int/publications/i/item/9789240037021 (2021).

  221. Sitbon, O. et al. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 177, 108–113 (2008).

    Article  PubMed  Google Scholar 

  222. WHO. HIV: Global situation and trends. WHO https://www.who.int/data/gho/data/themes/hiv-aids (2022).

  223. Dzudie, A. et al. Predictors of hospitalisations for heart failure and mortality in patients with pulmonary hypertension associated with left heart disease: a systematic review. BMJ Open 4, e004843 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Dzudie, A. et al. Pulmonary hypertension as seen in a rural area in sub-Saharan Africa: high prevalence, late clinical presentation and a high short-term mortality rate during follow up. Cardiovasc. J. Afr. 29, 208–212 (2018).

    Article  PubMed  Google Scholar 

  225. Bruchfeld, J., Correia-Neves, M. & Källenius, G. Tuberculosis and HIV coinfection. Cold Spring Harb. Perspect. Med. 26, a017871 (2015).

    Article  Google Scholar 

  226. Patel, P. et al. Association of schistosomiasis and HIV infections: a systematic review and meta-analysis. Int. J. Infect. Dis. 102, 544–553 (2021).

    Article  PubMed  Google Scholar 

  227. Aminde, L. N. et al. Gender disparities in pulmonary hypertension at a tertiary centre in Cameroon. S. Afr. Med. J. 107, 892–899 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Thienemann, F. et al. Long-term follow-up of human immunodeficiency virus-associated pulmonary hypertension: clinical features and survival outcomes of the Pan Africa Pulmonary Hypertension Cohort (PAPUCO). Open Forum Infect. Dis. 9, ofac604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Weatherald, J. et al. The evolving landscape of pulmonary arterial hypertension clinical trials. Lancet 400, 1884–1898 (2022).

    Article  PubMed  Google Scholar 

  230. Weiss, B. M. et al. Outcome of pulmonary vascular disease in pregnancy: a systematic overview from 1978 through 1996. J. Am. Coll. Cardiol. 31, 1650–1657 (1998).

    Article  CAS  PubMed  Google Scholar 

  231. Regitz-Zagrosek, V. et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur. Respir. J. 39, 3165–3241 (2018).

    Google Scholar 

  232. Jha, N. et al. Pulmonary hypertension and pregnancy outcomes: systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 253, 108–116 (2020).

    Article  PubMed  Google Scholar 

  233. Lv, C. et al. Maternal and fetal/neonatal outcomes of pregnancies complicated by pulmonary hypertension: a retrospective study of 154 patients. Clinics 78, 100194 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Roos-Hesselink, J. et al. Pregnancy outcomes in women with cardiovascular disease: evolving trends over 10 years in the ESC Registry Of Pregnancy And Cardiac disease (ROPAC). Eur. Respir. J. 40, 3848–3855 (2019).

    Google Scholar 

  235. Sliwa, K. et al. Pulmonary hypertension and pregnancy outcomes: data from the Registry Of Pregnancy and Cardiac Disease (ROPAC) of the European Society of Cardiology. Eur. J. Heart Fail. 18, 1119–1128 (2016); erratum 19, 439 (2017).

    Article  PubMed  Google Scholar 

  236. Barańska-Pawełczak, K. et al. Pregnancy in patients with pulmonary arterial hypertension in light of new ESC guidelines on pulmonary hypertension. Int. J. Environ. Res. Public Health 20, 4625 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance and intellectual input of N. Breault and I. Emon in drawing Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing of the first draft (A.M.); Introduction (A.M. and S.S.); Epidemiology (A.S., S.S., F.T. and A.M.); Mechanisms and pathophysiology (S.L.A. and Z.-C.J.); Diagnosis, screening and prevention (S.S., A.S., K.S. and A.M.); Management (M.H.); Quality of life (S.S.); Outlook (A.M., S.S. and M.H.). All authors reviewed the last version of the paper.

Corresponding author

Correspondence to Ana Mocumbi.

Ethics declarations

Competing interests

M.H. declares institutional, speaker, consultant or steering committee fees from Aerovate, Altavant, AOP Orphan, Bayer, Ferrer, Janssen (Actelion), MSD (Acceleron) and United Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks S. Abman, J.-L. Vachiery, C. Vizza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mocumbi, A., Humbert, M., Saxena, A. et al. Pulmonary hypertension. Nat Rev Dis Primers 10, 1 (2024). https://doi.org/10.1038/s41572-023-00486-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00486-7

  • Springer Nature Limited

This article is cited by

Navigation