Skip to main content
Log in

Laboratory robotics

Automation of air-free synthesis

  • News & Views
  • Published:

From Nature Reviews Chemistry

View current issue Sign up to alerts

Cutting-edge chemistry is often performed in non-atmospheric conditions. Continued development of the Chemputer platform now enables the utilization of sensitive compounds in automated synthetic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: A brief timeline of advances in automated synthesis.

References

  1. Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: From synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Olsen, K. The first 110 years of laboratory automation: Technologies, applications, and the creative scientist. J. Lab. Autom. 17, 469–480 (2012).

    Article  PubMed  Google Scholar 

  3. Stevens, T. Rapid and automatic filtration. Am. Chemist 6, 102 (1875).

    Google Scholar 

  4. Palkin, S., Murray, A. G. & Watkins, H. R. Automatic devices for extracting alkaloidal solutions. Ind. Eng. Chem. 17, 612–614 (1925).

    Article  CAS  Google Scholar 

  5. Ferguson, B. Jr. Semiautomatic fractionation. A rapid analytical method. Ind. Eng. Chem. Anal. Ed. 14, 493–496 (1942).

    Article  CAS  Google Scholar 

  6. Craig, L. C., Gregory, J. D. & Hausmann, W. Versatile laboratory concentration device. Anal. Chem. 22, 1462–1462 (1950).

    Article  CAS  Google Scholar 

  7. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, N. L. et al. Autonomous execution of highly reactive chemical transformations in the Schlenkputer. Nat. Chem. Eng. 1, 180–189 (2024).

    Article  Google Scholar 

  9. Malig, T. C., Yunker, L. P. E., Steiner, S. & Hein, J. E. Online high-performance liquid chromatography analysis of Buchwald–Hartwig aminations from within an inert environment. ACS Catal. 10, 13236–13244 (2020).

    Article  CAS  Google Scholar 

  10. Kleoff, M., Schwan, J., Christmann, M. & Heretsch, P. A Modular, argon-driven flow platform for natural product synthesis and late-stage transformations. Org. Lett. 23, 2370–2374 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connor W. Coley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjour, B.A., Coley, C.W. Automation of air-free synthesis. Nat Rev Chem 8, 300–301 (2024). https://doi.org/10.1038/s41570-024-00599-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00599-x

  • Springer Nature Limited

Navigation