Skip to main content
Log in

The microscopic structure of quantum space-time and matter from a renormalization group perspective

  • Comment
  • Published:

From Nature Physics

View current issue Submit your manuscript

The correct microscopic theory of quantum gravity may be an interacting, scale-invariant, ‘asymptotically safe’ model. This Comment discusses the renormalization group’s role in defining asymptotic safety and understanding its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Renormalization group flow of gravity and standard model couplings.

References

  1. Litim, D. F. & Sannino, F. J. High-Energy Phys. 12, 178 (2014).

    Article  ADS  Google Scholar 

  2. Weinberg, S. Critical phenomena for field theorists. In Understanding the Fundamental Constituents of Matter (ed. Zichichi, A.) (Springer, 1978).

  3. Reuter, M. Phys. Rev. D 57, 971 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bonanno, A. et al. Front. Phys. 8, 269 (2020).

    Article  Google Scholar 

  5. Pawlowski, J. M. & Reichert, M. Front. Phys. 8, 527 (2021).

    Article  Google Scholar 

  6. Saueressig, F. Preprint at https://arxiv.org/abs/2302.14152 (2023).

  7. Falls, K., Ohta, N. & Percacci, R. Phys. Lett. B 810, 135773 (2020).

    Article  MathSciNet  Google Scholar 

  8. Kluth, Y. & Litim, D. F. J. High-Energy Phys. 108, 026005 (2023).

    Google Scholar 

  9. Fehre, J., Litim, D. F., Pawlowski, J. M. & Reichert, M. Phys. Rev. Lett. 130, 081501 (2023).

    Article  ADS  Google Scholar 

  10. Morris, T. R. J. High-Energy Phys. 11, 160 (2016).

    Article  ADS  Google Scholar 

  11. Draper, T., Knorr, B., Ripken, C. & Saueressig, F. Phys. Rev. Lett. 125, 181301 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  12. Loll, R. Class. Quant. Grav. 37, 013002 (2020).

    Article  ADS  Google Scholar 

  13. Baldazzi, A., Percacci, R. & Zambelli, L. Phys. Rev. D 103, 076012 (2021).

    Article  ADS  Google Scholar 

  14. Alkofer, R. et al. Ann. Phys. 421, 168282 (2020).

    Article  MathSciNet  Google Scholar 

  15. Kowalska, K., Pramanick, S. & Sessolo, E. M. J. High-Energy Phys. 08, 262 (2022).

    Article  ADS  Google Scholar 

  16. Pastor-Gutiérrez, Á., Pawlowski, J. M. & Reichert, M. SciPost Phys. 15, 105 (2023).

    Article  ADS  Google Scholar 

  17. Eichhorn, A. & Versteegen, F. J. High-Energy Phys. 1801, 30 (2018).

    Article  ADS  Google Scholar 

  18. Shaposhnikov, M. & Wetterich, C. Phys. Lett. B 683, 196–200 (2010).

    Article  ADS  Google Scholar 

  19. Eichhorn, A. & Held, A. Phys. Lett. B 777, 217–221 (2018).

    Article  ADS  Google Scholar 

  20. Eichhorn, A. & Held, A. Phys. Rev. Lett. 121, 151302 (2018).

    Article  ADS  Google Scholar 

  21. Eichhorn, A. & M. Schiffer, M. Preprint at https://arxiv.org/abs/2212.07456 (2022).

  22. de Brito, G. P., Eichhorn, A. & Lino dos Santos, R. R. J. High-Energy Phys. 6, 13 (2022).

    Article  Google Scholar 

  23. Reichert, M. & Smirnov, J. Phys. Rev. D 101, 063015 (2020).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Eichhorn.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichhorn, A. The microscopic structure of quantum space-time and matter from a renormalization group perspective. Nat. Phys. 19, 1527–1529 (2023). https://doi.org/10.1038/s41567-023-02261-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02261-7

  • Springer Nature Limited

Navigation