Skip to main content
Log in

Muon colliders to expand frontiers of particle physics

  • Comment
  • Published:

From Nature Physics

View current issue Submit your manuscript

Muon colliders offer enormous potential for the exploration of the particle physics frontier but are challenging to realize. A new international collaboration is forming to make such a muon collider a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Energy efficiency of present and future colliders.
Fig. 2: Schematic layout of a 10-TeV-class muon collider complex.
Fig. 3: Ionization cooling-channel scheme.

References

  1. Irvine, J. & Martin, B. Res. Policy 13, 311–342 (1984).

    Article  Google Scholar 

  2. The 2020 Update of the European Strategy for Particle Physics (European Strategy Group, 2020); https://cds.cern.ch/record/2721370/files/CERN-ESU-015-2020%20Update%20European%20Strategy.pdf

  3. Shiltsev, V. & Zimmermann, F. Rev. Mod. Phys. (in the press); preprint at https://arxiv.org/abs/2003.09084 (2020).

  4. European Strategy for Particle Physics Preparatory Group Preprint at https://arxiv.org/abs/1910.11775 (2019).

  5. Benedikt, M. et al. Eur. Phys. J. Spec. Top. 228, 755–1107 (2019).

    Article  Google Scholar 

  6. Tikhonin, F. F. JINR Report P2-4120 (Dubna, 1968).

  7. Budker, G. I. Accelerators and colliding beams. In Proc. 7th International Conference on High-Energy Accelerators Vol. 1 33–39 (1970).

  8. Ankenbrandt, C. et al. Phys. Rev. ST Accel. Beams 2, 081001 (1999).

    Article  ADS  Google Scholar 

  9. Bogomilov, M. et al. Nature 578, 53–59 (2020).

    Article  Google Scholar 

  10. Geer, S. Annu. Rev. Nucl. Part. Sci. 59, 347–365 (2009).

    Article  ADS  Google Scholar 

  11. Palmer, R. B. Rev. Accel. Sci. Technol. 7, 137–159 (2014).

    Article  Google Scholar 

  12. King, B. J. AIP Conf. Proc. 530, 165–180 (2000).

    Article  ADS  Google Scholar 

  13. Alesini, D. et al. Preprint at https://arxiv.org/abs/1905.05747 (2019).

  14. Benedikt, M. & Zimmermann, F. Nat. Rev. Phys. 1, 238–240 (2019).

    Article  Google Scholar 

  15. Geer, S. Phys. Rev. D 57, 6989–6997 (1998).

    Article  ADS  Google Scholar 

  16. Choubey, S. et al. Preprint at https://arxiv.org/abs/1112.2853 (2011).

  17. Delahaye, J.-P. et al. J. Instrum. 13, T06003 (2018).

    Article  Google Scholar 

  18. Barger, V., Berger, M., Gunion, J. & Han, T. Nucl. Phys. B 51, 13–31 (1996).

    Article  Google Scholar 

  19. Delahaye, J. P. et al. Preprint at https://arxiv.org/abs/1901.06150 (2019).

  20. Buttazzo, D. et al. J. High Energy Phys. 2018, 144 (2018).

    Article  ADS  Google Scholar 

  21. Costantini, A. et al. J. High Energy Phys. 2020, 80 (2020).

    Article  Google Scholar 

  22. Chiesa, M. et al. J. High Energy Phys. 2020, 98 (2020).

    Article  Google Scholar 

  23. Bartosik, N. et al. J. Instrum. 15, P05001 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. R. Long, D. Lucchesi, M. A. Palmer, N. Pastrone, D. Schulte or V. Shiltsev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, K.R., Lucchesi, D., Palmer, M.A. et al. Muon colliders to expand frontiers of particle physics. Nat. Phys. 17, 289–292 (2021). https://doi.org/10.1038/s41567-020-01130-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01130-x

  • Springer Nature Limited

This article is cited by

Navigation