Skip to main content
Log in

MICROFLUIDICS

How to tame a giant oscillation

  • News & Views
  • Published:

From Nature Physics

View current issue Submit your manuscript

Experiments and simulations show that trains of droplets in microfluidic networks undergo synchronized oscillations, and that strategies to prevent these oscillations can help maintain uniform distribution of red blood cells in microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Droplets injected continuously into a simple microfluidic network form trains.

References

  1. Krogh, A. Anatomy and Physiology of Capillaries (Yale University Press, 1922).

  2. Fung, Y. C. Microvasc. Res. 5, 34–48 (1973).

    Article  Google Scholar 

  3. Cybulski, O., Garstecki, P. & Grzybowski, B. A. Nat. Phys. https://doi.org/10.1038/s41567-019-0486-8 (2019).

    Article  Google Scholar 

  4. Schindler, M. & Ajdari, A. Phys. Rev. Lett. 100, 044501 (2008).

    Article  ADS  Google Scholar 

  5. Kiani, M. F., Pries, A. R., Hsu, L. L., Sarelius, I. H. & Cokelet, G. R. Am. J. Physiol. 266, H1822–H1828 (1994).

    Google Scholar 

  6. Geddes, J. B., Carr, R. T., Wu, F., Lao, Y. & Maher, M. Chaos 20, 045123 (2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva A. Vanapalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanapalli, S.A. How to tame a giant oscillation. Nat. Phys. 15, 626–627 (2019). https://doi.org/10.1038/s41567-019-0510-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0510-z

  • Springer Nature Limited

Navigation