Skip to main content
Log in

Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

In a quantum phase transition, the ground state and low-temperature properties of a system change drastically as some parameter controlling zero-point quantum fluctuations is tuned to a critical value. Like classical phase transitions driven by thermal fluctuations, a ground-state transition can be discontinuous (first order) or continuous. Theoretical studies have suggested exotic continuous transitions where a system develops higher symmetries than those of the underlying Hamiltonian. Here, we demonstrate an unconventional discontinuous transition between two ordered ground states of a quantum magnet, with an emergent symmetry of its coexistence state. We present a Monte Carlo study of a two-dimensional S = 1/2 spin system hosting an antiferromagnetic state and a plaquette-singlet solid state of the kind recently detected in SrCu2(BO3)2. We show that the O(3) symmetric antiferromagnetic order and the scalar plaquette-singlet solid order form an O(4) vector at the transition. Unlike conventional first-order transitions, there are no energy barriers between the two coexisting phases, as the O(4) order parameter can be rotated at constant energy. Away from the transition, the O(4) surface is uniaxially deformed by the control parameter (a coupling ratio). This phenomenon may be observable in SrCu2(BO3)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Quantum spin models discussed in this work.
Fig. 2: Demonstration of a two-fold degenerate PSS state.
Fig. 3: CBJQ results from SSE simulations.
Fig. 4: Direct evidence for emergent O(4) symmetry.
Fig. 5: Inverse PSS critical temperature versus the shifted coupling δ = gc − g.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sachdev, S. Quantum magnetism and criticality. Nat. Phys. 4, 173–185 (2008).

    Article  Google Scholar 

  2. Kaul, R. K., Melko, R. G. & Sandvik, A. W. Bridging lattice-scale physics and continuum field theory with quantum Monte Carlo simulations. Annu. Rev. Condens. Matter Phys. 4, 179–215 (2013).

    Article  ADS  Google Scholar 

  3. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    Article  ADS  Google Scholar 

  4. Senthil, T., Balents, L., Sachdev, S., Vishwanath, A. & Fisher, M. P. A. Quantum criticality beyond the Landau–Ginzburg–Wilson paradigm. Phys. Rev. B 70, 144407 (2004).

    Article  ADS  Google Scholar 

  5. Sandvik, A. W. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Phys. Rev. Lett. 98, 227202 (2007).

    Article  ADS  Google Scholar 

  6. Melko, R. G. & Kaul, R. K. Scaling in the fan of an unconventional quantum critical point. Phys. Rev. Lett. 100, 017203 (2008).

    Article  ADS  Google Scholar 

  7. Jiang, F.-J., Nyfeler, M., Chandrasekharan, S. & Wiese, U.-J. From an antiferromagnet to a valence bond solid: evidence for a first-order phase transition. J. Stat. Mech. 2008, P02009 (2008).

    Google Scholar 

  8. Kuklov, A. B., Matsumoto, M., Prokof’ev, N. V., Svistunov, B. V. & Troyer, M. Deconfined criticality: generic first-order transition in the SU(2) symmetry case. Phys. Rev. Lett. 101, 050405 (2008).

    Article  ADS  Google Scholar 

  9. Lou, J., Sandvik, A. W. & Kawashima, N. Antiferromagnetic to valence-bond-solid transitions in two-dimensional SU(N) Heisenberg models with multispin interactions. Phys. Rev. B 80, 180414(R) (2009).

    Article  ADS  Google Scholar 

  10. Sandvik, A. W. Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: evidence for logarithmic corrections to scaling. Phys. Rev. Lett. 104, 177201 (2010).

    Article  ADS  Google Scholar 

  11. Chen, K. et al. Deconfined criticality flow in the Heisenberg model with ring-exchange interactions. Phys. Rev. Lett. 110, 185701 (2013).

    Article  ADS  Google Scholar 

  12. Harada, K. et al. Possibility of deconfined criticality in SU(N) Heisenberg models at small N. Phys. Rev. B 88, 220408(R) (2013).

    Article  ADS  Google Scholar 

  13. Block, M. S., Melko, R. G. & Kaul, R. K. Fate of CPN−1 fixed points with q monopoles. Phys. Rev. Lett. 111, 137202 (2013).

    Article  ADS  Google Scholar 

  14. Pujari, S., Damle, K. & Alet, F. Néel-state to valence-bond-solid transition on the honeycomb lattice: evidence for deconfined criticality. Phys. Rev. Lett. 111, 087203 (2013).

    Article  ADS  Google Scholar 

  15. Nahum, A., Chalker, J. T., Serna, P., Ortuño, M. & Somoza, A. M. Deconfined quantum criticality, scaling violations, and classical loop models. Phys. Rev. X 5, 041048 (2015).

    Google Scholar 

  16. Shao, H., Guo, W. & Sandvik, A. W. Quantum criticality with two length scales. Science 352, 213–216 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. Zayed, M. et al. 4-Spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2. Nat. Phys. 13, 962–966 (2017).

    Article  MathSciNet  Google Scholar 

  18. Shastry, B. S. & Sutherland, B. Exact ground state of a quantum mechanical antiferromagnet. Physica B + C 108, 1069–1070 (1981).

    ADS  Google Scholar 

  19. Corboz, P. & Mila, F. Tensor network study of the Shastry–Sutherland model in zero magnetic field. Phys. Rev. B 87, 115144 (2013).

    Article  ADS  Google Scholar 

  20. Nahum, A., Serna, P., Chalker, J. T., Ortuño, M. & Somoza, A. M. Emergent SO(5) symmetry at the Néel to valence-bond-solid transition. Phys. Rev. Lett. 115, 267203 (2015).

    Article  ADS  Google Scholar 

  21. Karch, A. & Tong, D. Particle-vortex duality from 3D bosonization. Phys. Rev. X 6, 031043 (2016).

    Google Scholar 

  22. Metlitski, M. A. & Vishwanath, A. Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators. Phys. Rev. B 93, 245151 (2016).

    Article  ADS  Google Scholar 

  23. Mross, D. F., Alicea, J. & Motrunich, O. I. Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2 + 1) dimensions. Phys. Rev. Lett. 117, 016802 (2016).

    Article  ADS  Google Scholar 

  24. Kachru, S., Mulligan, M., Torroba, G. & Wang, H. Non-supersymmetric dualities from mirror symmetry. Phys. Rev. Lett. 118, 011602 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, C., Nahum, A., Metlitski, M. A., Xu, C. & Senthil, T. Deconfined quantum critical points: symmetries and dualities. Phys. Rev. X 7, 031051 (2017).

    Google Scholar 

  26. Qin, Y. Q. et al. Duality between the deconfined quantum-critical point and the bosonic topological transition. Phys. Rev. X 7, 031052 (2017).

    Google Scholar 

  27. Sato, T., Hohenadler, M. & Assaad, F. F. Dirac fermions with competing orders: non-Landau transition with emergent symmetry. Phys. Rev. Lett. 119, 197203 (2017).

    Article  ADS  Google Scholar 

  28. Metlitski, M. A. & Thorngren, R. Intrinsic and emergent anomalies at deconfined critical points. Phys. Rev. B 98, 085140 (2018).

    Article  ADS  Google Scholar 

  29. Gazit, S., Assaad, F. F., Sachdev, S., Vishwanath, A. & Wang, C. Confinement transition of Z2 gauge theories coupled to massless fermions: emergent QCD3 and SO(5) symmetry. Proc. Natl Acad. Sci. USA 115, E6987 (2018).

    Article  ADS  Google Scholar 

  30. Sreejith, G. J., Powell, S. & Nahum, A. Emergent SO(5) symmetry at the columnar ordering transition in the classical cubic dimer model. Phys. Rev. Lett. 122, 080601 (2019).

    Article  ADS  Google Scholar 

  31. Irkhin, V. Yu & Katanin, A. A. Thermodynamics of isotropic and anisotropic layered magnets: renormalization-group approach and 1/N expansion. Phys. Rev. B 57, 379–391 (1998).

    Article  ADS  Google Scholar 

  32. Cuccoli, A., Roscilde, T., Tognetti, V., Vaia, R. & Verrucchi, P. Quantum Monte Carlo study of S = ½ weakly anisotropic antiferromagnets on the square lattice. Phys. Rev. B 67, 104414 (2003).

    Article  ADS  Google Scholar 

  33. Sandvik, A. W. & Evertz, H. G. Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis. Phys. Rev. B 82, 024407 (2010).

    Article  ADS  Google Scholar 

  34. Sandvik, A. W. Computational studies of quantum spin systems. AIP Conf. Proc. 1297, 135–338 (2010).

    Article  ADS  Google Scholar 

  35. Sandvik, A. W. Finite-size scaling and boundary effects in two-dimensional valence-bond solids. Phys. Rev. B 85, 134407 (2012).

    Article  ADS  Google Scholar 

  36. Senthil, T. & Fisher, M. P. A. Competing orders, nonlinear sigma models, and topological terms in quantum magnets. Phys. Rev. B 74, 064405 (2006).

    Article  ADS  Google Scholar 

  37. Luck, J. M. Corrections to finite-size-scaling laws and convergence of transfer-matrix methods. Phys. Rev. B 31, 3069–3083 (1985).

    Article  ADS  Google Scholar 

  38. Vollmayr, K., Reger, J. D., Scheucher, M. & Binder, K. Finite size effects at thermally-driven first order phase transitions: a phenomenological theory of the order parameter distribution. Z. Phys. B 91, 113–125 (1993).

    Article  ADS  Google Scholar 

  39. Iino, S., Morita, S., Sandvik, A. W. & Kawashima, N. Detecting signals of weakly first-order phase transitions in two-dimensional Potts models. J. Phys. Soc. Jpn 88, 034006 (2019).

    Article  ADS  Google Scholar 

  40. Sen, A. & Sandvik, A. W. Example of a first-order Néel to valence-bond-solid transition in two dimensions. Phys. Rev. B 82, 174428 (2010).

    Article  ADS  Google Scholar 

  41. Kuklov, A., Prokof’ev, N. & Svistunov, B. Weak first-order superfluid–solid quantum phase transitions. Phys. Rev. Lett. 93, 230402 (2004).

    Article  ADS  Google Scholar 

  42. Pelissettp, A. & Vicari, E. Multicritical behavior of two-dimensional anisotropic antiferromagnets in a magnetic field. Phys. Rev. B 76, 024436 (2007).

    Article  ADS  Google Scholar 

  43. Hasenbusch, M. & Vicari, E. Anisotropic perturbations in three-dimensional O(N)-symmetric vector models. Phys. Rev. B 84, 125136 (2011).

    Article  ADS  Google Scholar 

  44. Eichorn, A., Mesterházy, D. & Scherer, M. M. Multicritical behavior in models with two competing order parameters. Phys. Rev. E 88, 042141 (2013).

    Article  ADS  Google Scholar 

  45. Hébert, F. et al. Quantum phase transitions in the two-dimensional hardcore boson model. Phys. Rev. B 65, 014513 (2001).

    Article  ADS  Google Scholar 

  46. Demler, E., Hanke, W. & Zhang, S.-C. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909–974 (2004).

    Article  ADS  Google Scholar 

  47. Wildeboer, J., D’Emidio, J. & Kaul, R. K. Emergent symmetry at a transition between intertwined orders in a S = 1 magnet. Preprint at https://arxiv.org/abs/1808.04731 (2018).

  48. Serna, P. & Nahum, A. Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition. Preprint at https://arxiv.org/abs/1805.03759 (2018).

  49. Muller, M. E. A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2, 19–20 (1959).

    Article  Google Scholar 

  50. Beach, K. S. D. & Sandvik, A. W. Some formal results for the valence bond basis. Nucl. Phys. B 750, 142–178 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  51. Liang, S., Doucot, B. & Anderson, P. W. Some new variational resonating-valence-bond-type wave functions for the spin-½ antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365–368 (1988).

    Article  ADS  Google Scholar 

  52. Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Assaad, R. Kaul, N. Kawashima, S. Li, Z.Y. Meng, A. Nahum, Y. Ran, S. Sachdev, H. Shao, L. Sun, J. Takahashi and Z.-C. Yang for stimulating discussions. This work was supported by the NSF under grant no. DMR-1710170 and by a Simons Investigator Award. The calculations were carried out on Boston University’s Shared Computing Cluster.

Author information

Authors and Affiliations

Authors

Contributions

A.W.S. conceived the CBJQ model and planned the study. The numerical simulations of the CBJQ model were implemented and carried out by B.Z. P.W. simulated the classical Heisenberg model. B.Z. analysed all data under the supervision of A.W.S. and with input from P.W. B.Z. wrote the initial draft of the manuscript, which was finalized by A.W.S. with input from B.Z. and P.W.

Corresponding author

Correspondence to Anders W. Sandvik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Supplementary Figures 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Weinberg, P. & Sandvik, A.W. Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet. Nat. Phys. 15, 678–682 (2019). https://doi.org/10.1038/s41567-019-0484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0484-x

  • Springer Nature Limited

This article is cited by

Navigation