Skip to main content
Log in

Femtosecond pulses from a mid-infrared quantum cascade laser

  • Article
  • Published:

From Nature Photonics

View current issue Submit your manuscript

This article has been updated

Abstract

The quantum cascade laser has evolved to be a compact, powerful source of coherent mid-infrared light; however, its fast gain dynamics strongly restricts the formation of ultrashort pulses. As such, the shortest pulses reported so far were limited to a few picoseconds with some hundreds of milliwatts of peak power, strongly narrowing their applicability for time-resolved and nonlinear experiments. Here we demonstrate an approach capable of producing near-transform-limited subpicosecond pulses with several watts of peak power. Starting from a frequency-modulated phase-locked state, ultrashort high-peak-power pulses are generated via spectral filtering, gain modulation-induced spectral broadening and external pulse compression. We assess their temporal nature by means of a novel asynchronous sampling method, coherent beat note interferometry and interferometric autocorrelation. These results open new pathways for nonlinear physics in the mid-infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Diffraction grating compressor.
Fig. 2: Complex comb spectrum and coherence before and after pulse compression as measured by SWIFTS.
Fig. 3: Asynchronous upconversion sampling.
Fig. 4: Compressed and uncompressed QCL intensity profile as measured by ASUPS.
Fig. 5: Compressed QCL pulses as measured by IAC.
Fig. 6: Shortest compressed QCL pulses.

Similar content being viewed by others

Data availability

The measurement data that support the plots within this paper are available at https://www.research-collection.ethz.ch/handle/20.500.11850/504681 and from the corresponding author on reasonable request. Data that support the findings in this article are also available in the ETH Research Collection43.

Code availability

The analysis codes will be made available on reasonable request.

Change history

  • 24 November 2021

    In the HTML version of this Article published online, the copyright information was in error; the copyright information has now been corrected.

References

  1. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electronics 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  2. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  ADS  Google Scholar 

  3. Sutter, D. H. et al. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631–633 (1999).

    Article  ADS  Google Scholar 

  4. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001).

    Article  ADS  Google Scholar 

  5. Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–299 (2004).

    Article  ADS  Google Scholar 

  6. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  7. Pires, H., Baudisch, M., Sanchez, D., Hemmer, M. & Biegert, J. Ultrashort pulse generation in the mid-IR. Prog. Quantum Electron. 43, 1–30 (2015).

    Article  ADS  Google Scholar 

  8. Cao, Q., Kärtner, F. X. & Chang, G. Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation. Opt. Express 28, 1369–1384 (2020).

    Article  ADS  Google Scholar 

  9. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  10. Jouy, P. et al. Dual comb operation of λ ~ 8.2 μm quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 111, 141102 (2017).

    Article  ADS  Google Scholar 

  11. Schwarz, B. et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photon. 4, 1225–1231 (2017).

    Article  Google Scholar 

  12. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  13. Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 5, 948–953 (2018).

    Article  ADS  Google Scholar 

  14. Choi, H. et al. Gain recovery dynamics and photon-driven transport in quantum cascade lasers. Phys. Rev. Lett. 100, 167401 (2008).

    Article  ADS  Google Scholar 

  15. Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

    Article  ADS  Google Scholar 

  16. Revin, D. G., Hemingway, M., Wang, Y., Cockburn, J. W. & Belyanin, A. Active mode locking of quantum cascade lasers in an external ring cavity. Nat. Commun. 7, 11440 (2016).

    Article  ADS  Google Scholar 

  17. Hillbrand, J. et al. Mode-locked short pulses from an 8 μm wavelength semiconductor laser. Nat. Commun. 11, 5788 (2020).

    Article  ADS  Google Scholar 

  18. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat. Photon. 5, 306–313 (2011).

    Article  ADS  Google Scholar 

  19. Wang, F. et al. Generating ultrafast pulses of light from quantum cascade lasers. Optica 2, 944–949 (2015).

    Article  ADS  Google Scholar 

  20. Wang, F. et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photon. Rev. 11, 1700013 (2017).

    Article  ADS  Google Scholar 

  21. Hillbrand, J., Andrews, A. M., Detz, H., Strasser, G. & Schwarz, B. Coherent injection locking of quantum cascade laser frequency combs. Nat. Photon. 13, 101–104 (2019).

    Article  ADS  Google Scholar 

  22. Cappelli, F. et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat. Photon. 13, 562–568 (2019).

    Article  ADS  Google Scholar 

  23. Opačak, N. & Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett. 123, 243902 (2019).

    Article  ADS  Google Scholar 

  24. Burghoff, D. Unraveling the origin of frequency modulated combs using active cavity mean-field theory. Optica 7, 1781–1787 (2020).

    Article  ADS  Google Scholar 

  25. Chinn, S. & Swanson, E. Passive FM locking and pulse generation from 980-nm strained-quantum-well Fabry-Perot lasers. IEEE Photon. Technol. Lett. 5, 969–971 (1993).

    Article  ADS  Google Scholar 

  26. Sato, K. Optical pulse generation using Fabry-Pe/spl acute/rot lasers under continuous-wave operation. IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).

    Article  ADS  Google Scholar 

  27. Rosales, R. et al. High performance mode locking characteristics of single section quantum dash lasers. Opt. Express 20, 8649–8657 (2012).

    Article  ADS  Google Scholar 

  28. Martinez, O. 3000 Times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 μm region. IEEE J. Quantum Electron. 23, 59–64 (1987).

    Article  ADS  Google Scholar 

  29. Singleton, M., Beck, M. & Faist, J. Pulses from a mid-infrared quantum cascade laser frequency comb using an external compressor. J. Opt. Soc. Am. B 36, 1676–1683 (2019).

    Article  ADS  Google Scholar 

  30. Gellie, P. et al. Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation. Opt. Express 18, 20799–20816 (2010).

    Article  ADS  Google Scholar 

  31. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon. 8, 462–467 (2014).

    Article  ADS  Google Scholar 

  32. Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190–1202 (2015).

    Article  ADS  Google Scholar 

  33. Takara, H., Kawanishi, S., Yamabayashi, Y. & Saruwataris, M. An ultrahigh-speed optical waveform measurement method based on optical sampling with sum-frequency generation. Electron. Commun. Jpn 76, 1–11 (1993).

    Article  Google Scholar 

  34. Argence, B. et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat. Photon. 9, 456–460 (2015).

    Article  ADS  Google Scholar 

  35. Karstad, K. et al. Detection of mid-IR radiation by sum frequency generation for free space optical communication. Optics Lasers Eng. 43, 537–544 (2005).

    Article  ADS  Google Scholar 

  36. Rodwell, M. J. W., Weingarten, K. J., Bloom, D. M., Baer, T. & Kolner, B. H. Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback. Opt. Lett. 11, 638–640 (1986).

    Article  ADS  Google Scholar 

  37. Piccardo, M. et al. Frequency-modulated combs obey a variational principle. Phys. Rev. Lett. 122, 253901 (2019).

    Article  ADS  Google Scholar 

  38. Boiko, D. L. et al. Mid-infrared two photon absorption sensitivity of commercial detectors. Appl. Phys. Lett. 111, 171102 (2017).

    Article  ADS  Google Scholar 

  39. Kapsalidis, F. et al. Mid-infrared quantum cascade laser frequency combs with a microstrip-like line waveguide geometry. Appl. Phys. Lett. 118, 071101 (2021).

    Article  ADS  Google Scholar 

  40. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  41. Benedikovic, D. et al. Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-ir wavelengths. Opt. Express 25, 19468–19478 (2017).

    Article  ADS  Google Scholar 

  42. Cai, H., Liu, S., Lalanne, E. & Johnson, A. M. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses. Appl. Phys. Lett. 106, 051102 (2015).

    Article  ADS  Google Scholar 

  43. Täschler, P. ETH Research Collection (ETH, 2021); https://www.research-collection.ethz.ch/handle/20.500.11850/504681

Download references

Acknowledgements

This work was supported by the BRIDGE program, funded by the Swiss National Science Foundation and Innosuisse, in the scope of the CombTrace (no. 176584; P.T., M.Bertrand, F.K.) project. Further financial support was provided by the Swiss National Science Foundation (no. 165639; M.S., P.J.) and the European Union’s Horizon 2020 research and innovation program Qombs (no. 820419; B.S.). We would like to gratefully thank J. Hillbrand for helpful advice and discussion while conducting the experiments and for proofreading the manuscript. Moreover, we express gratitude to S. Markmann and A. Forrer for their careful reading of the paper, S. Wang for his preliminary work on ASUPS and R. Wang for providing QCLs in an early stage of the work. We thank E. Gini of the FIRST—Center for Micro- and Nanoscience for the MOVPE regrowths.

Author information

Authors and Affiliations

Authors

Contributions

P.T. built the upconversion, SWIFTS and autocorrelation set-up, performed the experiments and wrote the manuscript with editorial input from M.Bertrand, B.S. and J.F. M.Bertrand characterized the normal buried heterostructure device (LIV, optical spectra) used for this publication, performed preliminary IAC experiments and helped with the set-up of the radiofrequency-optimized device. B.S. was involved in the SWIFTS analysis, characterized the radiofrequency-optimized laser (LIV, optical spectra, beat note), helped with its set-up and performed preliminary strong microwave modulation experiments. M.S. dimensioned the grating compressor. P.J. and F.K. processed the QCLs used in this work. M.Beck was responsible for MBE growth. J.F. supervised this work.

Corresponding authors

Correspondence to Philipp Täschler or Jérôme Faist.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks Stefano Barbieri, Benedikt Schwarz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Figs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Täschler, P., Bertrand, M., Schneider, B. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photon. 15, 919–924 (2021). https://doi.org/10.1038/s41566-021-00894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00894-9

  • Springer Nature Limited

This article is cited by

Navigation