Abstract
The ability to cool and manipulate levitated nanoparticles in vacuum is a promising tool for exploring macroscopic quantum mechanics1,2, precision measurements of forces3 and non-equilibrium thermodynamics4,5. The extreme isolation afforded by optical levitation offers a low-noise, undamped environment that has been used to measure zeptonewton forces3 and radiation pressure shot noise6, and to demonstrate centre-of-mass motion cooling7,8. Ground-state cooling and the creation of macroscopic quantum superpositions are now within reach, but control of both the centre of mass and internal temperature is required. While cooling the centre-of-mass motion to micro-kelvin temperatures has now been achieved, the internal temperature has remained at or above room temperature. Here, we realize a nanocryostat by refrigerating levitated Yb3+:YLF nanocrystals to 130 K using anti-Stokes fluorescence cooling, while simultaneously using the optical trapping field to align the crystal to maximize cooling.
Similar content being viewed by others
References
Yin, Z., Li, T., Zhang, X. & Duan, L. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).
Wan, C. et al. Free nano-object Ramsey interferometry for large quantum superpositions. Phys. Rev. Lett. 117, 143003 (2016).
Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).
Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotech. 9, 358–364 (2014).
Millen, J., Deesuwan, T., Barker, P. F. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotech. 9, 425–429 (2014).
Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).
Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).
Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).
Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping of Neutral Atoms (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).
Pringsheim, P. Zwei bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung. Zeitschrift für Physik 57, 739–746 (1929).
Mungan, C. E., Buchwald, M. I., Edwards, B. C., Epstein, R. I. & Gosnell, T. R. Laser cooling of a solid by 16 K starting from room temperature. Phys. Rev. Lett. 78, 1030–1033 (1997).
Seletskiy, D. V. et al. Laser cooling of solids to cryogenic temperatures. Nat. Photon. 4, 161–164 (2010).
Melgaard, S. D., Albrecht, A. R., Hehlen, M. P. & Sheik-Bahae, M. Solid-state optical refrigeration to sub-100 kelvin regime. Sci. Rep. 6, 20380 (2016).
Epstein, R. I., Buchwald, M. I., Edwards, B. C., Gosnell, T. R. & Mungan, C. E. Observation of laser-induced fluorescent cooling of a solid. Nature 377, 500–503 (1995).
Roder, P. B., Smith, B. E., Zhou, X., Crane, M. J. & Pauzauskie, P. J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl Acad. Sci. USA 112, 15024–15029 (2015).
Bensalah, A. et al. Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality. Opt. Mater. 26, 375–383 (2004).
Sugiyama, A., Katsurayama, M., Anzai, Y. & Tsuboi, T. Spectroscopic properties of Yb doped YLF grown by a vertical bridgman method. J. Alloy. Compd. 408–412, 780–783 (2006).
Seletskiy, D. V. et al. Precise determination of minimum achievable temperature for solid-state optical refrigeration. J. Lumin. 133, 5–9 (2013).
Singer, W., Nieminen, T. A., Gibson, U. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Orientation of optically trapped nonspherical birefringent particles. Phys. Rev. E 73, 021911 (2006).
Maurice, E., Wade, S. A., Collins, S. F., Monnom, G. & Baxter, G. W. Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber. Appl. Opt. 36, 8264–8269 (1997).
Collins, S. F. et al. Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation. J. Appl. Phys. 84, 4649–4654 (1998).
Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).
Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).
Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).
Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nat. Photon. 5, 48–51 (2011).
Rings, D., Schachoff, R., Selmke, M., Cichos, F. & Kroy, K. Hot Brownian motion. Phys. Rev. Lett. 105, 090604 (2010).
Blundell, S. & Blundell, C. Concepts in Thermal Physics (Oxford Univ. Press, Oxford, UK, 2006).
Liu, F., Daun, K., Snelling, D. & Smallwood, G. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006).
Epstein, R. & Sheik-Bahae, M. Optical Refrigeration in Solids: Fundamentals and Overview 1–32 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).
Zhou, X., Smith, B. E., Roder, P. B. & Pauzauskie, P. J. Laser refrigeration of ytterbium-doped sodium-yttrium-fluoride nanowires. Adv. Mater. 28, 8658–8662 (2016).
Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Vamivakas, A. N. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).
Acknowledgements
The authors acknowledge support from a UK Engineering and Physical Science Research Council grant (EP/N031105/1). The authors thank G.W. Morley and A.C. Frangeskou for help with scanning electron microscopy imaging.
Author information
Authors and Affiliations
Contributions
A.T.M.A.R. and P.F.B. conceived and designed the experiment. Both authors performed the experiment, analysed the data and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Supplementary Information
Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals
Rights and permissions
About this article
Cite this article
Rahman, A., Barker, P.F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nature Photon 11, 634–638 (2017). https://doi.org/10.1038/s41566-017-0005-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-017-0005-3
- Springer Nature Limited
This article is cited by
-
Low-temperature optothermal nanotweezers
Nano Research (2023)
-
Excitation-Power-Dependent Upconversion Luminescence Competition in Single β-NaYbF4:Er Microcrystal Pumped at 808 nm
Nanoscale Research Letters (2022)
-
Dynamic Analysis and Simulation of an Optically Levitated Rotating Ellipsoid Rotor in Liquid Medium
Photonic Sensors (2022)
-
Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator
Nature Communications (2020)
-
Observation of nonlinear dynamics in an optical levitation system
Communications Physics (2020)