Abstract
Motional control of levitated nanoparticles relies on either autonomous feedback via a cavity or measurement-based feedback via external forces. Recent demonstrations of the measurement-based ground-state cooling of a single nanoparticle employ linear velocity feedback, also called cold damping, and require the use of electrostatic forces on charged particles via external electrodes. Here we introduce an all-optical cold damping scheme based on the spatial modulation of trap position, which has the advantage of being scalable to multiple particles. The scheme relies on programmable optical tweezers to provide full independent control over the trap frequency and position of each tweezer. We show that the technique cools the centre-of-mass motion of particles along one axis down to 17 mK at a pressure of 2 × 10−6 mbar and demonstrate its scalability by simultaneously cooling the motion of two particles. Our work paves the way towards studying quantum interactions between particles; achieving three-dimensional quantum control of particle motion without cavity-based cooling, electrodes or charged particles; and probing multipartite entanglement in levitated optomechanical systems.
Similar content being viewed by others
References
Millen, J., Monteiro, T. S., Pettit, R. & Vamivakas, A. N. Optomechanics with levitated particles. Rep. Prog. Phys. 83, 026401 (2020).
Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, eabg3027 (2021).
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).
Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595, 378–382 (2021).
Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373–377 (2021).
Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).
Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).
Ahn, J. et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).
van der Laan, F. et al. Sub-kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).
Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).
Hempston, D. et al. Force sensing with an optically levitated charged nanoparticle. Appl. Phys. Lett. 111, 133111 (2017).
Hebestreit, E., Frimmer, M., Reimann, R. & Novotny, L. Sensing static forces with free-falling nanoparticles. Phys. Rev. Lett. 121, 063602 (2018).
Chauhan, A. K., Černotík, O. & Filip, R. Stationary Gaussian entanglement between levitated nanoparticles. New J. Phys. 22, 123021 (2020).
Brandão, I., Tandeitnik, D. & Guerreiro, T. Coherent scattering-mediated correlations between levitated nanospheres. Quantum Sci. Technol. 6, 045013 (2021).
Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372, 622–625 (2021).
de Lépinay, L. M., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).
Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).
Landig, R. et al. Quantum phases from competing short- and long-range interactions in an optical lattice. Nature 532, 476–479 (2016).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).
Liu, S., Yin, Z.-q & Li, T. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array. Adv. Quantum Technol. 3, 1900099 (2020).
Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).
Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).
Wang, M. et al. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nat. Commun. 12, 600 (2021).
Quinn, T. J., Speake, C. C., Richman, S. J., Davis, R. S. & Picard, A. A new determination of G using two methods. Phys. Rev. Lett. 87, 111101 (2001).
Li, Q. et al. Measurements of the gravitational constant using two independent methods. Nature 560, 582–588 (2018).
Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).
Monteiro, F., Ghosh, S., Fine, A. G. & Moore, D. C. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A 96, 063841 (2017).
Li, T. Fundamental Tests of Physics with Optically Trapped Microspheres (Springer, 2013).
Dania, L., Bykov, D. S., Knoll, M., Mestres, P. & Northup, T. E. Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap. Phys. Rev. Research 3, 013018 (2021).
Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Research 2, 043054 (2020).
Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).
Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).
Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett. 123, 153601 (2019).
Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).
Tebbenjohanns, F., Frimmer, M., Militaru, A., Jain, V. & Novotny, L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 122, 223601 (2019).
Rudolph, H., Hornberger, K. & Stickler, B. A. Entangling levitated nanoparticles by coherent scattering. Phys. Rev. A 101, 011804 (2020).
Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).
Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).
Rieser, J. et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377, 987–990 (2022).
Tebbenjohanns, F., Frimmer, M. & Novotny, L. Optimal position detection of a dipolar scatterer in a focused field. Phys. Rev. A 100, 043821 (2019).
Hebestreit, E. et al. Calibration and energy measurement of optically levitated nanoparticle sensors. Rev. Sci. Instrum. 89, 033111 (2018).
Steixner, V., Rabl, P. & Zoller, P. Quantum feedback cooling of a single trapped ion in front of a mirror. Phys. Rev. A 72, 043826 (2005).
Bushev, P. et al. Feedback cooling of a single trapped ion. Phys. Rev. Lett. 96, 043003 (2006).
Iwasaki, M. et al. Electric feedback cooling of single charged nanoparticles in an optical trap. Phys. Rev. A 99, 051401 (2019).
Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).
Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).
Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014).
Yan, J., Yu, X., Han, Z. V., Li, T. & Zhang, J. On-demand assembly of optically-levitated nanoparticle arrays in vacuum. Preprint at https://arxiv.org/abs/2207.03641 (2022).
Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).
de los Ríos Sommer, A., Meyer, N. & Quidant, R. Strong optomechanical coupling at room temperature by coherent scattering. Nat. Commun. 12, 276 (2021).
Toroš, M., Delić, U. C. V., Hales, F. & Monteiro, T. S. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics. Phys. Rev. Research 3, 023071 (2021).
Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, K. & Stickler, B. A. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).
Kamba, M., Shimizu, R. & Aikawa, K. Optical cold damping of neutral nanoparticles near the ground state in an optical lattice. Opt. Exp. 30, 26716–26727 (2022).
Hebestreit, E. Thermal Properties of Levitated Nanoparticles. PhD thesis, ETH Zürich (2017).
Acknowledgements
This research was supported by the Swiss National Science Foundation (SNF) through the NCCR-QSIT programme (grant no. 51NF40-160591; L.N.), European Union’s Horizon 2020 research and innovation programme under grant nos. 863132 (iQLev; L.N.) and 951234 (Q-Xtreme; L.N.), and ETH Grant ETH-47 20-2 (M.F.). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank our colleagues at the Photonics Laboratory at ETH Zürich, U. Delic and A. Omran, for valuable input and discussions.
Author information
Authors and Affiliations
Contributions
J.V., Z.Z., J.P. and D.W. performed the measurements and analysed the data. J.V. and L.N. conceptualized the experiments with input from F.v.d.L and M.F. All the authors discussed the results and contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks Klaus Hornberger, Tongcang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Detection schemes used in the experiment.
Light scattered by the particle in the forward direction is detected on the QPD which performs measurement-based cold damping of the particle motion. The back-scattered light is detected on photodiodes that perform parametric cooling of the particle motion. Additionally, the back-scattered light is also used in a heterodyne detection scheme that can overcomes the scalability limitations of the forward detection. At the moment, it is used as a tool to detect multiple particles as they are loaded into the chamber. A green laser is used to illuminate the particles for taking high resolution images, such as in Fig. 4a of the main text.
Extended Data Fig. 2 Linear feedback circuit.
A) A schematic of the cold damping feedback loop from the detected signal Vil to the spatial displacement of the tweezer Δy. B) Estimated tweezer displacement Δy (green circles) for different gains applied at the function generator GFG. The dashed line is a square root fit to the data.
Extended Data Fig. 3 Damping rates from ring-down and reheating measurements.
The feedback damping rate (green circles) is independent of pressure whereas the gas damping rate (red circles) increases with pressure. As in the main text, the gain is fixed to a low value of γfb = 2π × 42 Hz, corresponding to GFG = 5 kHz/V.
Extended Data Fig. 4 Calibration of feedback gain.
Due to differences in the detection efficiency of the motional signal from particle 1 (red circles) and 2 (blue circles), the gain applied at the function generator GFG is adjusted to get the same γfb. Dashed lines are a linear fit to the data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vijayan, J., Zhang, Z., Piotrowski, J. et al. Scalable all-optical cold damping of levitated nanoparticles. Nat. Nanotechnol. 18, 49–54 (2023). https://doi.org/10.1038/s41565-022-01254-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-022-01254-6
- Springer Nature Limited
This article is cited by
-
Vacuum levitation and motion control on chip
Nature Nanotechnology (2024)
-
Non-Hermitian dynamics and non-reciprocity of optically coupled nanoparticles
Nature Physics (2024)
-
Non-reciprocity forces nanoparticles into lockstep
Nature Physics (2024)
-
Cavity-mediated long-range interactions in levitated optomechanics
Nature Physics (2024)
-
Scalable optical levitation
Nature Nanotechnology (2023)