Skip to main content
Log in

DIGITAL INFORMATION STORAGE

Deep learning beats the optical diffraction limit

  • News & Views
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

A deep learning approach enables up to nine bits of information to be encoded per diffraction-limited area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Multiple-bit encoding and deep-learning-enabled readout of information in a diffraction-limited area.

References

  1. Gu, M., Li, X. & Cao, Y. Light Sci. Appl. 3, e177 (2014).

    Article  CAS  Google Scholar 

  2. Zhang, Q., Xia, Z., Cheng, Y. B. & Gu, M. Nat. Commun. 9, 1183 (2018).

    Article  Google Scholar 

  3. Gu, M., Zhang, Q. & Lamon, S. Nat. Rev. Mater. 1, 16070 (2016).

    Article  CAS  Google Scholar 

  4. Wiecha, P. R., Lecestre, A., Mallet, N. & Larrieu, G. Nat. Nanotech. https://doi.org/10.1038/s41565-018-0346-1 (2019).

  5. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Science 354, aag2472 (2016).

    Article  Google Scholar 

  6. Baranov, D. G. et al. Optica 4, 814–825 (2017).

    Article  CAS  Google Scholar 

  7. Rivenson, Y. et al. ACS Photonics 5, 2354–2364 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Miroshnichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, A. Deep learning beats the optical diffraction limit. Nat. Nanotechnol. 14, 198–199 (2019). https://doi.org/10.1038/s41565-018-0357-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0357-y

  • Springer Nature Limited

Navigation