Skip to main content
Log in

Robust topologically protected transport in photonic crystals at telecommunication wavelengths

  • Letter
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

An Author Correction to this article was published on 17 December 2018

This article has been updated

Abstract

Photonic topological insulators offer the possibility to eliminate backscattering losses and improve the efficiency of optical communication systems. Despite considerable efforts, a direct experimental demonstration of theoretically predicted robust, lossless energy transport in topological insulators operating at near-infrared frequencies is still missing. Here, we combine the properties of a planar silicon photonic crystal and the concept of topological protection to design, fabricate and characterize an optical topological insulator that exhibits the valley Hall effect. We show that the transmittances are the same for light propagation along a straight topological interface and one with four sharp turns. This result quantitatively demonstrates the suppression of backscattering due to the non-trivial topology of the structure. The photonic-crystal-based approach offers significant advantages compared with other realizations of photonic topological insulators, such as lower propagation losses, the presence of a band gap for light propagating in the crystal-slab plane, a larger operating bandwidth, a much smaller footprint, compatibility with complementary metal–oxide–semiconductor fabrication technology, and the fact that it allows for operation at telecommunications wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic and operation principles of the photonic-crystal-based topological insulator.
Fig. 2: Scattering-free edge state in the photonic-crystal-based topological insulator.
Fig. 3: Observation of topologically protected propagation in a photonic-crystal-based topological insulator.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 17 December 2018

    In the version of this Letter originally published, Fig. 5g in the Supplementary Information was missing the scale bar. This has now been corrected.

References

  1. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  3. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  4. Bernevig, A. B. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, Princeton, 2013).

  5. Ferreira, G. J. & Loss, D. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett. 111, 106802 (2013).

    Article  Google Scholar 

  6. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    Article  CAS  Google Scholar 

  7. Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  CAS  Google Scholar 

  8. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–375 (2016).

    Article  Google Scholar 

  9. Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    Article  Google Scholar 

  10. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  CAS  Google Scholar 

  11. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2012).

    Article  Google Scholar 

  12. Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  CAS  Google Scholar 

  13. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  CAS  Google Scholar 

  14. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  15. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  CAS  Google Scholar 

  16. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  17. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    Article  CAS  Google Scholar 

  18. Chen, W. J. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

    Article  CAS  Google Scholar 

  19. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    Article  Google Scholar 

  20. Ma, T. & Shvets, G. Scattering-free edge states between heterogeneous photonic topological insulators. Phys. Rev. B 95, 165102 (2017).

    Article  Google Scholar 

  21. Wu, X. et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 8, 1304 (2017).

    Article  Google Scholar 

  22. Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  Google Scholar 

  23. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  Google Scholar 

  24. Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B 96, 020202 (2017).

    Article  Google Scholar 

  25. Dong, J.-W., Chen, X.-D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2016).

    Article  Google Scholar 

  26. He, X.-T. et al. Silicon-on-insulator slab for topological valley transport. Preprint at https://arxiv.org/abs/1805.10962 (2018).

  27. Dulkeith, E., McNab, S. J. & Vlasov, Y. A. Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides. Phys. Rev. B 72, 115102 (2005).

    Article  Google Scholar 

  28. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals Molding the Flow of Light 2nd edn (Princeton Univ. Press, Princeton, 2008).

  29. Collins, M. J., Zhang, F., Bojko, R., Chrostowski, L. & Rechtsman, M. C. Integrated optical Dirac physics via inversion symmetry breaking. Phys. Rev. A. 94, 063827 (2016).

    Article  Google Scholar 

  30. Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Article  Google Scholar 

  31. Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn 74, 1674–1677 (2005).

    Article  CAS  Google Scholar 

  32. Bleu, O., Solnyshkov, D. D. & Malpuech, G. Quantum valley Hall effect and perfect valley filter based on photonic analogs of transitional metal dichalcogenides. Phys. Rev. B 95, 235431 (2017).

    Article  Google Scholar 

  33. Shalaev, M. I., Desnavi, S., Walasik, W. & Litchinitser, N. M. Reconfigurable topological photonic crystal. New J. Phys. 20, 023040 (2018).

    Article  Google Scholar 

  34. Reardon, C. P., Rey, I. H., Welna, K., O'Faolain, L. & Krauss, T. F. Fabrication and characterization of photonic crystal slow light waveguides and cavities. J. Vis. Exp. 69, e50216 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Army Research Office grants W911NF-15-1-0152 and W911NF-11-1-0297. The authors acknowledge discussions with A. Khanikaev.

Author information

Authors and Affiliations

Authors

Contributions

M.I.S. and N.M.L. proposed the initial idea. M.I.S. and W.W. designed and performed the analytical and numerical analysis of the structure. M.I.S. fabricated the sample, performed the experimental measurements and analysed the results. A.T. and Y.X. assisted with the fabrication and measurement process of the sample. W.W., M.I.S. and N.M.L. co-wrote the manuscript. N.M.L. supervised the work.

Corresponding author

Correspondence to Natalia M. Litchinitser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Sections A–D

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaev, M.I., Walasik, W., Tsukernik, A. et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nature Nanotech 14, 31–34 (2019). https://doi.org/10.1038/s41565-018-0297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0297-6

  • Springer Nature Limited

This article is cited by

Navigation